• Banerjee, T., G. G. Katul, S. Salesky, and M. Chamecki, 2015: Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 141, 16991711, doi:10.1002/qj.2472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banerjee, T., D. Li, J.-Y. Juang, and G. Katul, 2016: A spectral budget model for the longitudinal turbulent velocity in the stable atmospheric surface layer. J. Atmos. Sci., 73, 145166, doi:10.1175/JAS-D-15-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolgiano, R., 1959: Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res., 64, 22262229, doi:10.1029/JZ064i012p02226.

  • Chamecki, M., and N. L. Dias, 2004: The local isotropy assumption and the turbulent kinetic energy dissipation rate in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 130, 27332752, doi:10.1256/qj.03.155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, P. A., and P.-Å. Krogstad, 2014: A universal scaling for low-order structure functions in the log-law region of smooth- and rough-wall boundary layers. J. Fluid Mech., 752, 140156, doi:10.1017/jfm.2014.286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, P. A., T. B. Nickels, and P.-Å. Krogstad, 2006: The logarithmic structure function law in wall-layer turbulence. J. Fluid Mech., 550, 5160, doi:10.1017/S0022112005008001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer. J. Atmos. Sci., 27, 12111213, doi:10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deissler, R. G., 1961: Effects of inhomogeneity and of shear flow in weak turbulent fields. Phys. Fluids, 4, 11871198, doi:10.1063/1.1706194.

  • Deissler, R. G., 1962: Turbulence in the presence of a vertical body force and temperature gradient. J. Geophys. Res., 67, 30493062, doi:10.1029/JZ067i008p03049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deissler, R. G., 1998: Turbulent Fluid Motion. Taylor & Francis, 478 pp.

  • De Silva, C. M., I. Marusic, J. D. Woodcock, and C. Meneveau, 2015: Scaling of second- and higher-order structure functions in turbulent boundary layers. J. Fluid Mech., 769, 654686, doi:10.1017/jfm.2015.122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., R. Newsom, R. Banta, P. Carlotti, R. Foster, P. Naveau, and J. Redelsperger, 2002: Turbulence in a shear driven nocturnal surface layer during the CASES’99 experiment. Extended Abstracts, 15th Conf. on Boundary Layer and Turbulence, Wageningen, Netherlands, Amer. Meteor. Soc., P3.8. [Available oline at https://ams.confex.com/ams/BLT/techprogram/paper_43842.htm.]

  • Hinze, J. O., 1975: Turbulence. McGraw-Hill Publishing Company, pp.

  • Högström, U., 1988: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Bound.-Layer Meteor., 42, 5578, doi:10.1007/BF00119875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., 1990: Analysis of turbulence structure in the surface layer with a modified similarity formulation for near-neutral conditions. J. Atmos. Sci., 47, 19491972, doi:10.1175/1520-0469(1990)047<1949:AOTSIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., J. C. R. Hunt, and A. Smedman, 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Bound.-Layer Meteor., 103, 101124, doi:10.1023/A:1014579828712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kader, B. A., 1988: Three-layer structures of an unstably stratified atmospheric surface layer. Izv. Atmos. Oceanic Phys., 24, 12351250.

    • Search Google Scholar
    • Export Citation
  • Kader, B. A., and A. M. Yaglom, 1989: Spectra and correlation functions of surface layer atmospheric turbulence in unstable thermal stratification. Turbulence and Coherent Structures, O. Metais, and M. Lesieur, Eds., Kluwer Academic Press, 387–412, doi:10.1007/978-94-015-7904-9_24.

    • Crossref
    • Export Citation
  • Kader, B. A., and A. M. Yaglom, 1990: Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech., 212, 637662, doi:10.1017/S0022112090002129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. Finnigan, 1994: Atmospheric Boundary Layer Flows. Oxford University Press, 289 pp.

    • Crossref
    • Export Citation
  • Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Cot, 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589, doi:10.1002/qj.49709841707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G., and C. Chu, 1998: A theoretical and experimental investigation of energy-containing scales in the dynamic sublayer of boundary-layer flows. Bound.-Layer Meteor., 86, 279312, doi:10.1023/A:1000657014845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers (in Russian). Dokl. Akad. Nauk SSSR, 30, 299303.

    • Search Google Scholar
    • Export Citation
  • Lauren, M. K., M. Menabde, A. W. Seed, and G. L. Austin, 1999: Characterisation and simulation of the multiscaling properties of the energy-containing scales of horizontal surface-layer winds. Bound.-Layer Meteor., 90, 2146, doi:10.1023/A:1001749126625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, X., W. Massman, and B. Law, 2004: Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Atmospheric and Oceanographic Sciences Library, Vol. 29, Kluwer Academic Publishers, 250 pp.

    • Crossref
    • Export Citation
  • Lumley, J. L., 1964: The spectrum of nearly inertial turbulence in a stably stratified fluid. J. Atmos. Sci., 21, 99102, doi:10.1175/1520-0469(1964)021<0099:TSONIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mater, B. D., S. M. Schaad, and S. K. Venayagamoorthy, 2013: Relevance of the Thorpe length scale in stably stratified turbulence. Phys. Fluids, 25, 076604, doi:10.1063/1.4813809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y., and M. Chamecki, 2016: A scaling law for the shear-production range of second-order structure functions. J. Fluid Mech., 801, 459474, doi:10.1017/jfm.2016.427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, A. E., S. Henbest, and M. S. Chong, 1986: A theoretical and experimental study of wall turbulence. J. Fluid Mech., 165, 163199, doi:10.1017/S002211208600304X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

    • Crossref
    • Export Citation
  • Salesky, S. T., and M. Chamecki, 2012: Random errors in turbulence measurements in the atmospheric surface layer: Implications for Monin–Obukhov similarity theory. J. Atmos. Sci., 69, 37003714, doi:10.1175/JAS-D-12-096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shah, S. K., and E. Bou-Zeid, 2014: Direct numerical simulations of turbulent Ekman layers with increasing static stability: Modifications to the bulk structure and second-order statistics. J. Fluid Mech., 760, 494539, doi:10.1017/jfm.2014.597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., 1995: On the universality of the Kolmogorov constant. Phys. Fluids, 7, 27782784, doi:10.1063/1.868656.

  • Tchen, C. M., 1953: On the spectrum of energy in turbulent shear flow. J. Res. Natl. Bur. Stand. (U.S.), 50, 5162, doi:10.6028/jres.050.009.

  • Tong, C., and K. X. Nguyen, 2015: Multipoint Monin–Obukhov similarity and its application to turbulence spectra in the convective atmospheric surface layer. J. Atmos. Sci., 72, 43374348, doi:10.1175/JAS-D-15-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Townsend, A. A., 1958: Turbulent flow in a stably stratified atmosphere. J. Fluid Mech., 3, 361372, doi:10.1017/S0022112058000045.

  • Townsend, A. A., 1976: The Structure of Turbulent Shear Flow. 2nd ed. Cambridge University Press, 442 pp.

  • UCAR/NCAR—Earth Observing Laboratory, 1990: NCAR Integrated Surface Flux System (ISFS). NCAR/Earth Observing Laboratory, doi:10.5065/D6ZC80XJ.

    • Crossref
    • Export Citation
  • Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512526, doi:10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and O. R. Coté, 1971: The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci., 28, 190201, doi:10.1175/1520-0469(1971)028<0190:TBOTKE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., O. R. Coté, and Y. Izumi, 1971: Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci., 28, 11711182, doi:10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaglom, A. M., 1994: Fluctuation spectra and variances in convective turbulent boundary layers: A reevaluation of old models. Phys. Fluids, 6, 962972, doi:10.1063/1.868328.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 10
PDF Downloads 51 51 6

Scaling Laws for the Longitudinal Structure Function in the Atmospheric Surface Layer

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 2 Department of Environmental Engineering, Federal University of Paraná, Curitiba, Brazil
  • | 3 Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada
  • | 4 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

Scaling laws for the longitudinal structure function in the atmospheric surface layer (ASL) are studied using dimensional analysis and matched asymptotics. Theoretical predictions show that the logarithmic scaling for the scales larger than those of the inertial subrange recently proposed for neutral wall-bounded flows also holds for the shear-dominated ASL composed of weakly unstable, neutral, and all stable conditions (as long as continuous turbulence exists). A 2/3 power law is obtained for buoyancy-dominated ASLs. Data from the Advection Horizontal Array Turbulence Study (AHATS) field experiment confirm these scalings, and they also show that the length scale formed by the friction velocity and the turbulent kinetic energy dissipation rate consistently outperforms the distance from the ground z as the relevant scale in all cases regardless of stability. With this new length scale, the production range of the longitudinal structure function collapses for all measurement heights and stability conditions. A new variable to characterize atmospheric stability emerges from the theory: namely, the ratio between the buoyancy flux and the TKE dissipation rate.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Marcelo Chamecki, chamecki@ucla.edu

Abstract

Scaling laws for the longitudinal structure function in the atmospheric surface layer (ASL) are studied using dimensional analysis and matched asymptotics. Theoretical predictions show that the logarithmic scaling for the scales larger than those of the inertial subrange recently proposed for neutral wall-bounded flows also holds for the shear-dominated ASL composed of weakly unstable, neutral, and all stable conditions (as long as continuous turbulence exists). A 2/3 power law is obtained for buoyancy-dominated ASLs. Data from the Advection Horizontal Array Turbulence Study (AHATS) field experiment confirm these scalings, and they also show that the length scale formed by the friction velocity and the turbulent kinetic energy dissipation rate consistently outperforms the distance from the ground z as the relevant scale in all cases regardless of stability. With this new length scale, the production range of the longitudinal structure function collapses for all measurement heights and stability conditions. A new variable to characterize atmospheric stability emerges from the theory: namely, the ratio between the buoyancy flux and the TKE dissipation rate.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Marcelo Chamecki, chamecki@ucla.edu
Save