• Baik, J.-J., 1992: Response of a stably stratified atmosphere to low-level heating—An application to the heat island problem. J. Appl. Meteor., 31, 291303, doi:10.1175/1520-0450(1992)031<0291:ROASSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlag, A.-B., and W. Kuttler, 1990: The significance of country breezes for urban planning. Energy Build., 15, 291297, doi:10.1016/0378-7788(90)90001-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, J. F., 1969: Nocturnal urban boundary layer over Cincinnati, Ohio. Mon. Wea. Rev., 97, 582589, doi:10.1175/1520-0493(1969)097<0582:NUBLOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalu, G. A., and R. A. Pielke, 1989: An analytical study of the sea breeze. J. Atmos. Sci., 46, 18151825, doi:10.1175/1520-0469(1989)046<1815:AASOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dandou, A., M. Tombrou, and N. Soulakellis, 2009: The influence of the city of Athens on the evolution of the sea-breeze front. Bound.-Layer Meteor., 131, 3551, doi:10.1007/s10546-008-9306-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 1986: Simulated and observed influence of the nocturnal urban heat island on the local wind field. J. Climate Appl. Meteor., 25, 11251133, doi:10.1175/1520-0450(1986)025<1125:SAOIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estoque, M. A., and C. M. Bhumralkar, 1969: Flow over a localized heat source. Mon. Wea. Rev., 97, 850859, doi:10.1175/1520-0493(1969)097<0850:FOALHS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganbat, G., J.-J. Baik, and Y.-H. Ryu, 2015a: A numerical study of the interactions of urban breeze circulation with mountain slope winds. Theor. Appl. Climatol., 120, 123135, doi:10.1007/s00704-014-1162-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganbat, G., J. M. Seo, J.-Y. Han, and J.-J. Baik, 2015b: A theoretical study of the interactions of urban breeze circulation with mountain slope winds. Theor. Appl. Climatol., 121, 545555, doi:10.1007/s00704-014-1252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haeger-Eugensson, M., and B. Holmer, 1999: Advection caused by the urban heat island circulation as a regulating factor on the nocturnal urban heat island. Int. J. Climatol., 19, 975988, doi:10.1002/(SICI)1097-0088(199907)19:9<975::AID-JOC399>3.0.CO;2-J.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J.-Y., and J.-J. Baik, 2008: A theoretical and numerical study of urban heat island–induced circulation and convection. J. Atmos. Sci., 65, 18591877, doi:10.1175/2007JAS2326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-H., and J.-J. Baik, 2010: Statistical and dynamical characteristics of the urban heat island intensity in Seoul. Theor. Appl. Climatol., 100, 227237, doi:10.1007/s00704-009-0247-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., and V. Masson, 2002: Simulation of a summer urban breeze over Paris. Bound.-Layer Meteor., 104, 463490, doi:10.1023/A:1016509614936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and J. Chao, 2016: An analytical solution for three-dimensional sea–land breeze. J. Atmos. Sci., 73, 4154, doi:10.1175/JAS-D-14-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., and R. B. Smith, 1986: Transient dynamics of airflow near a local heat source. J. Atmos. Sci., 43, 4049, doi:10.1175/1520-0469(1986)043<0040:TDOANA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindén, J., and B. Holmer, 2011: Thermally induced wind patterns in the Sahelian city of Ouagadougou, Burkina Faso. Theor. Appl. Climatol., 105, 229241, doi:10.1007/s00704-010-0383-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1973: City size and the urban heat island. Atmos. Environ., 7, 769779, doi:10.1016/0004-6981(73)90140-6.

  • Olfe, D. B., and R. L. Lee, 1971: Linearized calculations of urban heat island convection effects. J. Atmos. Sci., 28, 13741388, doi:10.1175/1520-0469(1971)028<1374:LCOUHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, A., R. D. Bornstein, and J. Soares, 2003: Annual and diurnal wind patterns in the city of São Paulo. Water, Air, Soil Pollut.: Focus, 3, 315, doi:10.1023/A:1026090103764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1983: On the linear theory of the land and sea breeze. J. Atmos. Sci., 40, 19992009, doi:10.1175/1520-0469(1983)040<1999:OTLTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., and J.-J. Baik, 2013: Daytime local circulations and their interactions in the Seoul metropolitan area. J. Appl. Meteor. Climatol., 52, 784801, doi:10.1175/JAMC-D-12-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., J.-J. Baik, and J.-Y. Han, 2013a: Daytime urban breeze circulation and its interaction with convective cells. Quart. J. Roy. Meteor. Soc., 139, 401413, doi:10.1002/qj.1973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., J.-J. Baik, K.-H. Kwak, and N. Moon, 2013b: Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area. Atmos. Chem. Phys., 13, 21772194, doi:10.5194/acp-13-2177-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savijärvi, H., and J. Liya, 2001: Local winds in a valley city. Bound.-Layer Meteor., 100, 301319, doi:10.1023/A:1019215031007.

  • Seo, J. M., G. Ganbat, J.-Y. Han, and J.-J. Baik, 2017: Theoretical calculations of interactions between urban breezes and mountain slope winds in the presence of basic-state wind. Theor. Appl. Climatol., 127, 865874, doi:10.1007/s00704-015-1674-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shreffler, J. H., 1978: Detection of centripetal heat island circulations from tower data in St. Louis. Bound.-Layer Meteor., 15, 229242, doi:10.1007/BF00121924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shreffler, J. H., 1979: Heat island convergence in St. Louis during calm periods. J. Appl. Meteor., 18, 15121520, doi:10.1175/1520-0450(1979)018<1512:HICISL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 4
PDF Downloads 14 14 3

Dynamics of Reversed Urban Breeze Circulation

View More View Less
  • 1 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
  • | 2 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea, and Information and Research Institute of Meteorology, Hydrology, and Environment, Ulaanbaatar, Mongolia
  • | 3 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

The urban breeze circulation (UBC) is a thermally forced mesoscale circulation that is characterized by low-level inward flow toward the urban center, updrafts near the urban center, upper-level outward flows, and weak downdrafts outside the urban area. Previous numerical modeling studies indicate that in the early morning the direction of the UBC can be reversed. Here, the dynamics of a reversed UBC is studied in the context of the response of the atmosphere to specified thermal forcing, which represents diurnally varying urban heating. For this, a linearized, two-dimensional, hydrostatic, Boussinesq airflow system in a rotating frame with specified thermal forcing is solved using the Fourier transform method. The occurrence of a reversed UBC in the early morning is confirmed. The Coriolis parameter affects the strength and vertical structure of the UBC, whose role is similar to that of the coefficient of Rayleigh friction and Newtonian cooling. The occurrence condition, strength, and vertical structure of a reversed UBC are examined. The Coriolis force as well as urban heating alters the occurrence time of the reversed UBC. For a strongly viscous system, a reversed UBC occurs only in high latitudes with low occurrence possibility. A simple oscillation-type model for the horizontal velocity is constructed to get some dynamical insights into a reversed UBC. The analysis results also show that the Coriolis force alters the occurrence time of the reversed UBC.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jong-Jin Baik, jjbaik@snu.ac.kr

Abstract

The urban breeze circulation (UBC) is a thermally forced mesoscale circulation that is characterized by low-level inward flow toward the urban center, updrafts near the urban center, upper-level outward flows, and weak downdrafts outside the urban area. Previous numerical modeling studies indicate that in the early morning the direction of the UBC can be reversed. Here, the dynamics of a reversed UBC is studied in the context of the response of the atmosphere to specified thermal forcing, which represents diurnally varying urban heating. For this, a linearized, two-dimensional, hydrostatic, Boussinesq airflow system in a rotating frame with specified thermal forcing is solved using the Fourier transform method. The occurrence of a reversed UBC in the early morning is confirmed. The Coriolis parameter affects the strength and vertical structure of the UBC, whose role is similar to that of the coefficient of Rayleigh friction and Newtonian cooling. The occurrence condition, strength, and vertical structure of a reversed UBC are examined. The Coriolis force as well as urban heating alters the occurrence time of the reversed UBC. For a strongly viscous system, a reversed UBC occurs only in high latitudes with low occurrence possibility. A simple oscillation-type model for the horizontal velocity is constructed to get some dynamical insights into a reversed UBC. The analysis results also show that the Coriolis force alters the occurrence time of the reversed UBC.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jong-Jin Baik, jjbaik@snu.ac.kr
Save