Simulation, Modeling, and Dynamically Based Parameterization of Organized Tropical Convection for Global Climate Models

Mitchell W. Moncrieff National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Mitchell W. Moncrieff in
Current site
Google Scholar
PubMed
Close
,
Changhai Liu National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Changhai Liu in
Current site
Google Scholar
PubMed
Close
, and
Peter Bogenschutz National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Peter Bogenschutz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new approach for treating organized convection in global climate models (GCMs) referred to as multiscale coherent structure parameterization (MCSP) introduces physical and dynamical effects of organized convection that are missing from contemporary parameterizations. The effects of vertical shear are approximated by a nonlinear slantwise overturning model based on Lagrangian conservation principles. Simulation of the April 2009 Madden–Julian oscillation event during the Year of Tropical Convection (YOTC) over the Indian Ocean using the Weather Research and Forecasting (WRF) Model at 1.3-km grid spacing identifies self-similar properties for squall lines, MCSs, and superclusters embedded in equatorial waves. The slantwise overturning model approximates this observed self-similarity. The large-scale effects of MCSP are examined in two categories of GCM. First, large-scale convective systems simulated in an aquaplanet model are approximated by slantwise overturning with attention to convective momentum transport. Second, MCSP is utilized in the Community Atmosphere Model, version 5.5 (CAM5.5), as tendency equations for second-baroclinic heating and convective momentum transport. The difference between MCSP and CAM5.5 is a direct measure of the global effects of organized convection. Consistent with TRMM measurements, the MCSP generates large-scale precipitation patterns in the tropical warm pool and the adjoining locale; improves precipitation in the intertropical convergence zone (ITCZ), South Pacific convergence zone (SPCZ), and Maritime Continent regions; and affects tropical wave modes. In conclusion, the treatment of organized convection by MCSP is salient for the next generation of GCMs.

Denotes content that is immediately available upon publication as open access.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Mitchell W. Moncrieff, moncrief@ucar.edu

Abstract

A new approach for treating organized convection in global climate models (GCMs) referred to as multiscale coherent structure parameterization (MCSP) introduces physical and dynamical effects of organized convection that are missing from contemporary parameterizations. The effects of vertical shear are approximated by a nonlinear slantwise overturning model based on Lagrangian conservation principles. Simulation of the April 2009 Madden–Julian oscillation event during the Year of Tropical Convection (YOTC) over the Indian Ocean using the Weather Research and Forecasting (WRF) Model at 1.3-km grid spacing identifies self-similar properties for squall lines, MCSs, and superclusters embedded in equatorial waves. The slantwise overturning model approximates this observed self-similarity. The large-scale effects of MCSP are examined in two categories of GCM. First, large-scale convective systems simulated in an aquaplanet model are approximated by slantwise overturning with attention to convective momentum transport. Second, MCSP is utilized in the Community Atmosphere Model, version 5.5 (CAM5.5), as tendency equations for second-baroclinic heating and convective momentum transport. The difference between MCSP and CAM5.5 is a direct measure of the global effects of organized convection. Consistent with TRMM measurements, the MCSP generates large-scale precipitation patterns in the tropical warm pool and the adjoining locale; improves precipitation in the intertropical convergence zone (ITCZ), South Pacific convergence zone (SPCZ), and Maritime Continent regions; and affects tropical wave modes. In conclusion, the treatment of organized convection by MCSP is salient for the next generation of GCMs.

Denotes content that is immediately available upon publication as open access.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Mitchell W. Moncrieff, moncrief@ucar.edu
Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., G. Shutts, M. Leutbecher, and T. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626, doi:10.1175/2008JAS2677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biello, J., A. Majda, and M. W. Moncrieff, 2007: Meridional momentum flux and superrotation in the multiscale IPESD MJO model. J. Atmos. Sci., 64, 16361651, doi:10.1175/JAS3908.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biello, J., B. Khouider, and A. J. Majda, 2010: Stochastic models for convective momentum transport. Commun. Math. Sci., 8, 187216, doi:10.4310/CMS.2010.v8.n1.a10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schannen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 26, 96559676, doi:10.1175/JCLI-D-13-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., 1993: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci., 50, 889906, doi:10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., C. J. Seman, R. S. Hemler, and S. M. Fan, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14, 34443463, doi:10.1175/1520-0442(2001)014<3444:ACPIMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerard, L., 2015: Model resolution issues and new approaches in the convection-permitting regions. Seamless Prediction of the Earth-System: From Minutes to Months, G. Brunet, S. Jones, and P. M. Ruti, Eds., World Meteorological Organization, 113–134. [Available online at http://library.wmo.int/pmb_ged/wmo_1156_en.pdf.]

  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, doi:10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58, 978997, doi:10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and R. H. Johnson, 1998: Two-day disturbances in the equatorial western Pacific. Quart. J. Roy. Meteor. Soc., 124, 615–636, doi:10.1002/qj.49712454611.

    • Crossref
    • Export Citation
  • Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 27072721, doi:10.1175/JAS3352.1.

  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121, doi:10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., G. N. Kilasis, A. Enno, and T. M. Rickenbach, 2008: Vertical-mode decomposition of 2-day waves and the Madden–Julian oscillation. J. Atmos. Sci., 65, 813933, doi:10.1175/2007JAS2314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. International Geophysics Series, Vol. 14, Academic Press, 432 pp.

  • Houze, R. A., Jr., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys. Space Phys., 19, 541576, doi:10.1029/RG019i004p00541.

  • Houze, R. A., Jr., C.-P. Cheng, C. A. Leary, and J. Gamache, 1980: Diagnosis of cloud mass and heat flux from radar and synoptic data. J. Atmos. Sci., 37, 754773, doi:10.1175/1520-0469(1980)037<0754:DOCMAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kershaw, R., and D. Gregory, 1997: Parameterization of momentum transport by convection. Part I: Theory and cloud modelling results. Quart. J. Roy. Meteor. Soc., 123, 11331151, doi:10.1002/qj.49712354102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., D. Randall, and C. Mott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62, 21362154, doi:10.1175/JAS3453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parametrization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, doi:10.1175/JAS3677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2007: A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations. J. Atmos. Sci., 64, 381400, doi:10.1175/JAS3833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008: Multicloud models for organized tropical convection: Enhanced congestus heating. J. Atmos. Sci., 65, 895914, doi:10.1175/2007JAS2408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and Y. Han, 2013: A framework for assessing the effects of mesoscales on synoptic scales. Theor. Comput. Fluid Dyn., 27, 473489, doi:10.1007/s00162-012-0276-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and M. W. Moncrieff, 2015: Organized convection parameterization for the ITCZ. J. Atmos. Sci., 72, 30733096, doi:10.1175/JAS-D-15-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521544, doi:10.1175/1520-0469(1989)046<0521:ANIOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and M. W. Moncrieff, 2015: Long-lived convective systems in a low–convective inhibition environment. Part I: Upshear propagation. J. Atmos. Sci., 72, 42974318, doi:10.1175/JAS-D-15-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J., B. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309, doi:10.1175/1520-0469(2004)061<0296:SPVHPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., 2007: New multiscale models and self-similarity in tropical convection. J. Atmos. Sci., 64, 13931404, doi:10.1175/JAS3880.1.

  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, doi:10.1073/pnas.0903367106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, doi:10.1029/2011MS000042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. N. Tulich, J.-L. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves. Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Miyakawa, T., Y. N. Takayabu, T. Nasuno, H. Miura, M. Satoh, and M. W. Moncrieff, 2012: Convective momentum transport by rainbands within a Madden–Julian oscillation in a global nonhydrostatic model with explicit deep convective processes. Part I: Methodology and general results. J. Atmos. Sci., 69, 13171338, doi:10.1175/JAS-D-11-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1981: A theory of organized steady convection and its transport properties. Quart. J. Roy. Meteor. Soc., 107, 2950, doi:10.1002/qj.49710745103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Meteor. Soc., 118, 819850, doi:10.1002/qj.49711850703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1997: Momentum transport by organized convection. The Physics and Dynamics on Moist Atmospheric Convection, R. K. Smith, Ed., NATO ASI Series, Series C: Mathematical and Physical Sciences, Vol. 505, Kluwer Academic Publishers, 231–253.

    • Crossref
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 15211538, doi:10.1175/1520-0469(2004)061<1521:AROTLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2010: The multiscale organization of moist convection and the intersection of weather and climate. Climate Dynamics: Why Does Climate Vary? Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 3–26, doi:10.1029/2008GM000838.

    • Crossref
    • Export Citation
  • Moncrieff, M. W., and J. S. A. Green, 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98, 336352, doi:10.1002/qj.49709841607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and E. Klinker, 1997: Organized convective systems in the tropical western Pacific as a process in general circulation models. Quart. J. Roy. Meteor. Soc., 123, 805828, doi:10.1002/qj.49712354002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and C. Liu, 2006: Representing convective organization in prediction models by a hybrid strategy. J. Atmos. Sci., 63, 34043420, doi:10.1175/JAS3812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and D. E. Waliser, 2015: Organized convection and the YOTC Project. Seamless Prediction of the Earth-System: From Minutes to Months, G. Brunet, S. Jones, and P. M. Ruti, Eds., World Meteorological Organization, 283–310. [Available online at http://library.wmo.int/pmb_ged/wmo_1156_en.pdf.]

  • Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. E. Shapiro, G. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC Virtual Global Field Campaign. Bull. Amer. Meteor. Soc., 93, 11711187, doi:10.1175/BAMS-D-11-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical superclusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, doi:10.1175/MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J.-H., X. Jiang, D. E. Waliser, M. W. Moncrieff, R. H. Johnson, and P. Ciesielski, 2015: A momentum budget analysis of westerly winds events associated with the Madden–Julian oscillation during DYNAMO. J. Atmos. Sci., 72, 37803799, doi:10.1175/JAS-D-15-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499, doi:10.1175/2007JCLI1789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 13411358, doi:10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053, doi:10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part II: Westward-propagating inertio-gravity waves. J. Meteor. Soc. Japan, 72, 451465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., K.-M. Lau, and C. H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 18921912, doi:10.1175/1520-0493(1996)124<1892:OOAQDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and M. W. Moncrieff, 2009: Multiscale cloud system modeling. Rev. Geophys., 47, RG4002, doi:10.1029/2008RG000276.

  • Thompson, G., P. R. Field, W. R. Hall, and R. M. Rasmussen, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, W.-W., and M. Yanai, 2002: Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. J. Atmos. Sci., 59, 25352549, doi:10.1175/1520-0469(2002)059<2535:CMTODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of the ECMWF sub-forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, doi:10.1002/qj.2256.

  • Vitart, F., and Coauthors, 2015: Sub-seasonal to seasonal prediction: Linking weather and climate. Seamless Prediction of the Earth-System: From Minutes to Months, G. Brunet, S. Jones, and P. M. Ruti, Eds., World Meteorological Organization, 385–401. [Available online at http://library.wmo.int/pmb_ged/wmo_1156_en.pdf.]

  • Waliser, D. E., and Coauthors, 2012: The “Year” of Tropical Convection (May 2008–April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 11891218, doi:10.1175/2011BAMS3095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., and M. Yanai, 1994: Effects of wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660, doi:10.1175/1520-0469(1994)051<1640:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., H. Ma, J. Boyle, S. Klein, and Y. Zhang, 2012: On the correspondence between short- and long-time-scale systematic errors in CAM4/CAM5 for the Years of Tropical Convection. J. Climate, 25, 79377955, doi:10.1175/JCLI-D-12-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and M. W. Moncrieff, 2016: Numerical archetypal parameterization for mesoscale convective systems. J. Atmos. Sci., 73, 25852602, doi:10.1175/JAS-D-15-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., J. C. McWilliams, M. W. Moncrieff, and K. A. Emanuel, 1995: Hierarchical tropical cloud systems in an analog shallow-water model. J. Atmos. Sci., 52, 17231742, doi:10.1175/1520-0469(1995)052<1723:HTCSIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate General Circulation Model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 874 247 10
PDF Downloads 776 157 5