A Physically Based Autoconversion Parameterization

Hyunho Lee School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Hyunho Lee in
Current site
Google Scholar
PubMed
Close
and
Jong-Jin Baik School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Jong-Jin Baik in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A physically based parameterization for the autoconversion is derived by solving the stochastic collection equation (SCE) with an approximated collection kernel. The collection kernel is constructed using the terminal velocity of cloud droplets and the collision efficiency between cloud droplets that is obtained using a particle trajectory model. The new parameterization proposed in this study is validated through comparison with results obtained by a bin-based direct SCE solver and other autoconversion parameterizations using a box model. The autoconversion-related time scale and drop number concentration are employed for the validation. The results of the new parameterization are shown to most closely match those of the direct SCE solver. It is also shown that the dependency of the autoconversion rate on drop number concentration in the new parameterization is similar to that in the direct SCE solver, which is partially caused by the shape of drop size distribution. The new parameterization and other parameterizations are implemented into a cloud-resolving model, and idealized shallow warm clouds are simulated. The autoconversion parameterizations that yield the small (large) autoconversion rate tend to predict large (small) cloud optical thickness, small (large) cloud fraction, and small (large) surface precipitation amount. Cloud optical thickness and cloud fraction are changed by up to ~45% and ~20% by autoconversion parameterizations, respectively. The new parameterization tends to yield the moderate autoconversion rate among the autoconversion parameterizations. Moreover, it predicts cloud optical thickness, cloud fraction, and surface precipitation amount that are generally the closest to those of the bin microphysics scheme.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jong-Jin Baik, jjbaik@snu.ac.kr

Abstract

A physically based parameterization for the autoconversion is derived by solving the stochastic collection equation (SCE) with an approximated collection kernel. The collection kernel is constructed using the terminal velocity of cloud droplets and the collision efficiency between cloud droplets that is obtained using a particle trajectory model. The new parameterization proposed in this study is validated through comparison with results obtained by a bin-based direct SCE solver and other autoconversion parameterizations using a box model. The autoconversion-related time scale and drop number concentration are employed for the validation. The results of the new parameterization are shown to most closely match those of the direct SCE solver. It is also shown that the dependency of the autoconversion rate on drop number concentration in the new parameterization is similar to that in the direct SCE solver, which is partially caused by the shape of drop size distribution. The new parameterization and other parameterizations are implemented into a cloud-resolving model, and idealized shallow warm clouds are simulated. The autoconversion parameterizations that yield the small (large) autoconversion rate tend to predict large (small) cloud optical thickness, small (large) cloud fraction, and small (large) surface precipitation amount. Cloud optical thickness and cloud fraction are changed by up to ~45% and ~20% by autoconversion parameterizations, respectively. The new parameterization tends to yield the moderate autoconversion rate among the autoconversion parameterizations. Moreover, it predicts cloud optical thickness, cloud fraction, and surface precipitation amount that are generally the closest to those of the bin microphysics scheme.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jong-Jin Baik, jjbaik@snu.ac.kr
Save
  • Baker, M. B., 1993: Variability in concentrations of CCN in the marine cloud-top boundary layer. Tellus, 45B, 458472, doi:10.3402/tellusb.v45i5.15742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851883, doi:10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33, 193206, doi:10.1016/0169-8095(94)90020-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 1996: An approximation formula for drop/drop-collision efficiencies. Proc. 12th Int. Conf. on Clouds and Precipitation, Zurich, Switzerland, International Commission on Clouds and Precipitation, 917–920.

  • Beheng, K. D., and G. Doms, 1986: A general formulation of collection rates of clouds and raindrops using the kinetic equation and comparison with parameterizations. Contrib. Atmos. Phys., 59, 6684.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part II. Single initial distributions. J. Atmos. Sci., 31, 18251831, doi:10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284294, doi:10.1175/1520-0469(2000)057<0284:AFMFTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 18151842, doi:10.1256/smsqj.56613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., 2008: A warm rain microphysics parameterization that includes the effect of turbulence. J. Atmos. Sci., 65, 17951816, doi:10.1175/2007JAS2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507, doi:10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. A., B. J. Shipway, and I. A. Boutle, 2015: How sensitive are aerosol-precipitation interactions to the warm rain representation? J. Adv. Model. Earth Syst., 7, 9871004, doi:10.1002/2014MS000422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 88 pp.

    • Crossref
    • Export Citation
  • Khain, A., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129146, doi:10.1016/j.atmosres.2010.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, doi:10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y., 2013: A cumulus cloud microphysics parameterization for cloud-resolving models. J. Atmos. Sci., 70, 14231436, doi:10.1175/JAS-D-12-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., and S.-C. Ou, 1989: The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective. J. Geophys. Res., 94D, 85998607, doi:10.1029/JD094iD06p08599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and P. H. Daum, 2004: Parameterization of the autoconversion. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 15391548, doi:10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, A. B., 1974: Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31, 10401052, doi:10.1175/1520-0469(1974)031<1040:STTDCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and W. R. Cotton, 1977: Formulation of approximate equations for modeling moist deep convection on the mesoscale. Colorado State University Atmospheric Science Paper 266, 62 pp.

  • Michibata, T., and T. Takemura, 2015: Evaluation of autoconversion schemes in a single model framework with satellite observations. J. Geophys. Res. Atmos., 120, 95709590, doi:10.1002/2015JD023818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and T. Takahashi, 1973: The development of warm rain in a cumulus cloud. J. Atmos. Sci., 30, 262277, doi:10.1175/1520-0469(1973)030<0262:TDOWRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onishi, R., K. Matsuda, and K. Takahashi, 2015: Lagrangian tracking simulation of droplet growth in turbulence—Turbulence enhancement of autoconversion rate. J. Atmos. Sci., 72, 25912607, doi:10.1175/JAS-D-14-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742764, doi:10.1175/1520-0469(2001)058<0742:CEODIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59–60, 265281, doi:10.1016/S0169-8095(01)00126-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, doi:10.1007/s00703-005-0112-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shipway, B. J., and A. A. Hill, 2012: Diagnosis of systematic differences between multiple parameterizations of warm rain microphysics using a kinematic framework. Quart. J. Roy. Meteor. Soc., 138, 21962211, doi:10.1002/qj.1913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, doi:10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection over South Florida. J. Appl. Meteor., 19, 10371063, doi:10.1175/1520-0450(1980)019<1037:ANIOSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. N. Blossey, 2005: Comments on “Parameterization of the autoconversion. Part I: Analytical formulation of the Kessler-type parameterizations.” J. Atmos. Sci., 62, 30033006, doi:10.1175/JAS3524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., B. Stevens, and M. Ghil, 2005: On the diurnal cycle and susceptibility to aerosol concentration in a stratocumulus-topped mixed layer. Quart. J. Roy. Meteor. Soc., 131, 15671583, doi:10.1256/qj.04.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 432 134 12
PDF Downloads 470 143 13