A Diagnosis of Excessive Mixing in Smagorinsky Subfilter-Scale Turbulent Kinetic Energy Models

Stephan R. de Roode Delft University of Technology, Delft, Netherlands

Search for other papers by Stephan R. de Roode in
Current site
Google Scholar
PubMed
Close
,
Harm J. J. Jonker Delft University of Technology, Delft, Netherlands

Search for other papers by Harm J. J. Jonker in
Current site
Google Scholar
PubMed
Close
,
Bas J. H. van de Wiel Delft University of Technology, Delft, Netherlands

Search for other papers by Bas J. H. van de Wiel in
Current site
Google Scholar
PubMed
Close
,
Victor Vertregt Delft University of Technology, Delft, Netherlands

Search for other papers by Victor Vertregt in
Current site
Google Scholar
PubMed
Close
, and
Vincent Perrin Delft University of Technology, Delft, Netherlands

Search for other papers by Vincent Perrin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-eddy simulation (LES) models are widely used to study atmospheric turbulence. The effects of small-scale motions that cannot be resolved need to be modeled by a subfilter-scale (SFS) model. The SFS contribution to the turbulent fluxes is typically significant in the surface layer. This study presents analytical solutions of the classical Smagorinsky SFS turbulent kinetic energy (TKE) model including a buoyancy flux contribution. Both a constant length scale and a stability-dependent one as proposed by Deardorff are considered. Analytical expressions for the mixing functions are derived and Monin–Obukhov similarity relations that are implicitly imposed by the SFS TKE model are diagnosed. For neutral and weakly stable conditions, observations indicate that the turbulent Prandtl number (PrT) is close to unity. However, based on observations in the convective boundary layer, a lower value for PrT is often applied in LES models. As a lower Prandtl number promotes a stronger mixing of heat, this may cause excessive mixing, which is quantified from a direct comparison of the mixing function as imposed by the SFS TKE model with empirical fits from field observations. For a strong stability, the diagnosed mixing functions for both momentum and heat are larger than observed. The problem of excessive mixing will be enhanced for anisotropic grids. The findings are also relevant for high-resolution numerical weather prediction models that use a Smagorinsky-type TKE closure.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Stephan de Roode, s.r.deroode@tudelft.nl

Abstract

Large-eddy simulation (LES) models are widely used to study atmospheric turbulence. The effects of small-scale motions that cannot be resolved need to be modeled by a subfilter-scale (SFS) model. The SFS contribution to the turbulent fluxes is typically significant in the surface layer. This study presents analytical solutions of the classical Smagorinsky SFS turbulent kinetic energy (TKE) model including a buoyancy flux contribution. Both a constant length scale and a stability-dependent one as proposed by Deardorff are considered. Analytical expressions for the mixing functions are derived and Monin–Obukhov similarity relations that are implicitly imposed by the SFS TKE model are diagnosed. For neutral and weakly stable conditions, observations indicate that the turbulent Prandtl number (PrT) is close to unity. However, based on observations in the convective boundary layer, a lower value for PrT is often applied in LES models. As a lower Prandtl number promotes a stronger mixing of heat, this may cause excessive mixing, which is quantified from a direct comparison of the mixing function as imposed by the SFS TKE model with empirical fits from field observations. For a strong stability, the diagnosed mixing functions for both momentum and heat are larger than observed. The problem of excessive mixing will be enhanced for anisotropic grids. The findings are also relevant for high-resolution numerical weather prediction models that use a Smagorinsky-type TKE closure.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Stephan de Roode, s.r.deroode@tudelft.nl
Save
  • Abkar, M., A. Sharifi, and F. Porté-Agel, 2015: Large-eddy simulation of the diurnal variation of wake flows in a finite-size wind farm. J. Phys.: Conf. Ser., 625, 012031, doi:10.1088/1742-6596/625/1/012031.

    • Search Google Scholar
    • Export Citation
  • Anderson, P. S., 2009: Measurement of Prandtl number as a function of Richardson number avoiding self-correlation. Bound.-Layer Meteor., 131, 345362, doi:10.1007/s10546-009-9376-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansorge, C., and J. P. Mellado, 2014: Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Bound.-Layer Meteor., 153, 89116, doi:10.1007/s10546-014-9941-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baas, P., S. R. de Roode, and G. Lenderink, 2008: The scaling behaviour of a turbulent kinetic energy closure model for stably stratified conditions. Bound.-Layer Meteor., 127, 1736, doi:10.1007/s10546-007-9253-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, N. D. Kelley, R. M. Hardesty, and W. A. Brewer, 2013: Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler lidar. Bull. Amer. Meteor. Soc., 94, 883902, doi:10.1175/BAMS-D-11-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basu, S., and F. Porté-Agel, 2006: Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach. J. Atmos. Sci., 63, 20742091, doi:10.1175/JAS3734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and M. K. Macvean, 2004: Resolution sensitivity and scaling of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 112, 257281, doi:10.1023/B:BOUN.0000027910.57913.4d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, doi:10.1007/s10546-004-2820-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A., and A. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341, doi:10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böing, S. J., 2014: The interaction between deep convective clouds and their environment. Ph.D. thesis, Delft University of Technology, 133 pp., doi:10.4233/uuid:aa9e6037-b9cb-4ea0-9eb0-a47bf1dfc940.

    • Crossref
    • Export Citation
  • Böing, S. J., H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 26822698, doi:10.1175/JAS-D-11-0317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014: Seamless stratocumulus simulation across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, doi:10.1175/MWR-D-13-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, J. G., and T. Wei, 2010: Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids, 22, 021303, doi:10.1063/1.3319073.

    • Crossref
    • Export Citation
  • Brown, A. R., S. Derbyshire, and P. J. Mason, 1994: Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Quart. J. Roy. Meteor. Soc., 120, 14851512, doi:10.1002/qj.49712052004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1973: Three-dimensional numerical modeling of the planetary boundary layer. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 271–311.

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Roode, S. R., P. G. Duynkerke, and H. J. J. Jonker, 2004: Large-eddy simulation: How large is large enough? J. Atmos. Sci., 61, 403421, doi:10.1175/1520-0469(2004)061<0403:LSHLIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Roode, S. R., and Coauthors, 2016: Large-eddy simulations of EUCLIPSE–GASS Lagrangian stratocumulus-to-cumulus transitions: Mean state, turbulence, and decoupling. J. Atmos. Sci., 73, 24852508, doi:10.1175/JAS-D-15-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dipankar, A., B. Stevens, R. Heinze, C. Moseley, G. Zängl, M. Giorgetta, and S. Brdar, 2015: Large eddy simulation using the general circulation model ICON. J. Adv. Model. Earth Syst., 7, 963986, doi:10.1002/2015MS000431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and S. R. De Roode, 2001: Surface energy balance and turbulence characteristics observed at the SHEBA Ice Camp during FIREIII. J. Geophys. Res., 106, 15 31315 322, doi:10.1029/2000JD900537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363372, doi:10.1007/BF00240838.

  • Efstathiou, G., and R. J. Beare, 2015: Quantifying and improving sub-grid diffusion in the boundary-layer grey zone. Quart. J. Roy. Meteor. Soc., 141, 30063017, doi:10.1002/qj.2585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., R. Conzemius, and D. Mironov, 2004: Convective entrainment into a shear-free, linearly stratified atmosphere: Bulk models reevaluated through large eddy simulations. J. Atmos. Sci., 61, 281295, doi:10.1175/1520-0469(2004)061<0281:CEIASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibbs, J. A., and E. Fedorovich, 2016: Sensitivity of turbulence statistics in the lower portion of a numerically simulated stable boundary layer to parameters of the Deardorff subgrid turbulence model. Quart. J. Roy. Meteor. Soc., 142, 22052213, doi:10.1002/qj.2818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2007a: On the turbulent Prandtl number in the stable atmospheric boundary layer. Bound.-Layer Meteor., 125, 329341, doi:10.1007/s10546-007-9192-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2007b: SHEBA flux–profile relationships in the stable atmospheric boundary layer. Bound.-Layer Meteor., 124, 315333, doi:10.1007/s10546-007-9177-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., and Coauthors, 2010: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geosci. Model Dev., 3, 415444, doi:10.5194/gmd-3-415-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., 1988: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Topics in Micrometeorology: A Festschrift for Arch Dyer, B. B. Hicks, Ed., Springer, 55–78.

    • Crossref
    • Export Citation
  • Holtslag, A. A. M., and C.-H. Moeng, 1991: Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48, 16901698, doi:10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, doi:10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, doi:10.1175/JAS-D-11-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonker, H. J. J., P. G. Duynkerke, and J. W. M. Cuijpers, 1999: Mesoscale fluctuations in scalars generated by boundary layer convection. J. Atmos. Sci., 56, 801808, doi:10.1175/1520-0469(1999)056<0801:MFISGB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. K., and D. A. Randall, 2003: Cloud-resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. K., and K. Emanuel, 2013: Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst., 5, 816825, doi:10.1002/2013MS000253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khanna, S., and J. G. Brasseur, 1997: Analysis of Monin–Obukhov similarity from large-eddy simulation. J. Fluid Mech., 345, 251286, doi:10.1017/S0022112097006277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleissl, J., C. Meneveau, and M. B. Parlange, 2003: On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer. J. Atmos. Sci., 60, 23722388, doi:10.1175/1520-0469(2003)060<2372:OTMAVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosović, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 10521068, doi:10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lesieur, M., O. Métais, and P. Comte, 2005: Large-Eddy Simulations of Turbulence. Cambridge University Press, 232 pp.

    • Crossref
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148172, doi:10.3402/tellusa.v14i2.9537.

  • Lilly, D. K., 1967: The representation of small-scale turbulence in numerical simulations. Proc. IBM Scientific Computing Symp. on Environmental Sciences, Yorktown Heights, NY, IBM, 195–209.

  • Lock, A. P., 1998: The parameterization of entrainment in cloudy boundary layers. Quart. J. Roy. Meteor. Soc., 124, 27292753, doi:10.1002/qj.49712455210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., and F. Porté-Agel, 2011: Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids, 23, 065101, doi:10.1063/1.3589857.

    • Crossref
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, doi:10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., 2014: Monin–Obukhov similarity functions for the structure parameters of temperature and humidity in the unstable surface layer: Results from high-resolution large-eddy simulations. J. Atmos. Sci., 71, 716733, doi:10.1175/JAS-D-13-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P. J., 1989: Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci., 46, 14921516, doi:10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and D. J. Thomson, 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242, 5178, doi:10.1017/S0022112092002271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheou, G., D. Chung, L. Nuijens, B. Stevens, and J. Teixeira, 2011: On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Mon. Wea. Rev., 139, 29182939, doi:10.1175/2011MWR3599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneveau, C., and J. Katz, 2000: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech., 32, 132, doi:10.1146/annurev.fluid.32.1.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J. D., J. K. Lundquist, and B. Kosović, 2010: Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the Advanced Research WRF model. Mon. Wea. Rev., 138, 42124228, doi:10.1175/2010MWR3286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., J. Dudhia, J. Klemp, and P. Sullivan, 2007: Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Wea. Rev., 135, 22952311, doi:10.1175/MWR3406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neggers, R., A. Siebesma, and T. Heus, 2012: Continuous single-column model evaluation at a permanent meteorological supersite. Bull. Amer. Meteor. Soc., 93, 13891400, doi:10.1175/BAMS-D-11-00162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216, doi:10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., P. J. Mason, C.-H. Moeng, and U. Schumann, 1993: Large-eddy simulation of the convective boundary layer: A comparison of four computer codes. Turbulent Shear Flows 8, F. Durst et al., Eds., Springer, 343–367, doi:10.1007/978-3-642-77674-8_24.

    • Crossref
    • Export Citation
  • Ohya, Y., 2001: Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Bound.-Layer Meteor., 98, 5782, doi:10.1023/A:1018767829067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raasch, S., and M. Schröter, 2001: PALM—A large-eddy simulation model performing on massively parallel computers. Meteor. Z., 10, 363372, doi:10.1127/0941-2948/2001/0010-0363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savre, J., A. M. Ekman, and G. Svensson, 2014: Technical note: Introduction to MIMICA, a large-eddy simulation solver for cloudy planetary boundary layers. J. Adv. Model. Earth Syst., 6, 630649, doi:10.1002/2013MS000292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schalkwijk, J., H. J. J. Jonker, A. P. Siebesma, and E. van Meijgaard, 2015: Weather forecasting using GPU-based large-eddy simulations. Bull. Amer. Meteor. Soc., 96, 715723, doi:10.1175/BAMS-D-14-00114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1975: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys., 18, 376404, doi:10.1016/0021-9991(75)90093-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1991: Subgrid length-scales for large-eddy simulation of stratified turbulence. Theor. Comput. Fluid Dyn., 2, 279290, doi:10.1007/BF00271468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Y., S. Liu, J. H. Schween, and S. Crewell, 2013: Large-eddy atmosphere–land-surface modelling over heterogeneous surfaces: Model development and comparison with measurements. Bound.-Layer Meteor., 148, 333356, doi:10.1007/s10546-013-9823-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52, 650666, doi:10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part I: The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2010: Gradient-based scales and similarity laws in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 136, 12431254, doi:10.1002/qj.638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco, 2009: Evaluation of the Weather Research and Forecasting model on forecasting low-level jets: Implications for wind energy. Wind Energy, 12, 8190, doi:10.1002/we.288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2005: Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Bound.-Layer Meteor., 117, 231257, doi:10.1007/s10546-004-6848-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, doi:10.1007/BF00713741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., T. W. Horst, D. H. Lenschow, C.-H. Moeng, and J. C. Weil, 2003: Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech., 482, 101139, doi:10.1017/S0022112003004099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. Weil, E. G. Patton, H. J. J. Jonker, and D. V. Mironov, 2016: Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer. J. Atmos. Sci., 73, 18151840, doi:10.1175/JAS-D-15-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talbot, C., E. Bou-Zeid, and J. Smith, 2012: Nested mesoscale large-eddy simulations with WRF: Performance in real test cases. J. Hydrometeor., 13, 14211441, doi:10.1175/JHM-D-11-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, W. H. D. Ronde, and H. J. J. Jonker, 2008: Local similarity in the stable boundary layer and mixing-length approaches: Consistency of concepts. Bound.-Layer Meteor., 128, 103116, doi:10.1007/s10546-008-9277-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, and H. J. J. Jonker, 2012: The cessation of continuous turbulence as precursor of the very stable boundary layer. J. Atmos. Sci., 69, 30973115, doi:10.1175/JAS-D-12-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Stratum, B. J. H., and B. Stevens, 2015: The influence of misrepresenting the nocturnal boundary layer on idealized daytime convection in large-eddy simulation. J. Adv. Model. Earth Syst., 7, 423436, doi:10.1002/2014MS000370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanZanten, M. C., 2000: Entrainment processes in stratocumulus. Ph.D. thesis, Utrecht University, 139 pp. [Available from Institute for Marine and Atmospheric Research (IMAU), Faculty of Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.]

  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

    • Crossref
    • Export Citation
  • Young, G. S., 1987: Mixed layer spectra from aircraft measurements. J. Atmos. Sci., 44, 12511256, doi:10.1175/1520-0469(1987)044<1251:MLSFAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady state, homogeneous regimes. Bound.-Layer Meteor., 125, 167191, doi:10.1007/s10546-007-9189-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 361 113 14
PDF Downloads 259 78 6