Large Contribution of Coarse Mode to Aerosol Microphysical and Optical Properties: Evidence from Ground-Based Observations of a Transpacific Dust Outbreak at a High-Elevation North American Site

E. Kassianov Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by E. Kassianov in
Current site
Google Scholar
PubMed
Close
,
M. Pekour Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by M. Pekour in
Current site
Google Scholar
PubMed
Close
,
C. Flynn Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by C. Flynn in
Current site
Google Scholar
PubMed
Close
,
L. K. Berg Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. K. Berg in
Current site
Google Scholar
PubMed
Close
,
J. Beranek Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by J. Beranek in
Current site
Google Scholar
PubMed
Close
,
A. Zelenyuk Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by A. Zelenyuk in
Current site
Google Scholar
PubMed
Close
,
C. Zhao Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by C. Zhao in
Current site
Google Scholar
PubMed
Close
,
L. R. Leung Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. R. Leung in
Current site
Google Scholar
PubMed
Close
,
P. L. Ma Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by P. L. Ma in
Current site
Google Scholar
PubMed
Close
,
L. Riihimaki Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. Riihimaki in
Current site
Google Scholar
PubMed
Close
,
J. D. Fast Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by J. D. Fast in
Current site
Google Scholar
PubMed
Close
,
J. Barnard University of Nevada, Reno, Nevada

Search for other papers by J. Barnard in
Current site
Google Scholar
PubMed
Close
,
A. G. Hallar Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado

Search for other papers by A. G. Hallar in
Current site
Google Scholar
PubMed
Close
,
I. B. McCubbin Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado

Search for other papers by I. B. McCubbin in
Current site
Google Scholar
PubMed
Close
,
E. W. Eloranta University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by E. W. Eloranta in
Current site
Google Scholar
PubMed
Close
,
A. McComiskey National Oceanic and Atmospheric Administration, Boulder, Colorado

Search for other papers by A. McComiskey in
Current site
Google Scholar
PubMed
Close
, and
P. J. Rasch Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by P. J. Rasch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work is motivated by previous studies of transatlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 μm. The authors examine coarse mode contributions from transpacific transport of dust to North American aerosol properties using a dataset collected at the high-elevation Storm Peak Laboratory (SPL) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility. Collected ground-based data are complemented by quasi-global model simulations and satellite and ground-based observations. The authors identify a major dust event associated mostly with a transpacific plume (about 65% of near-surface aerosol mass) in which the coarse mode with moderate (~3 μm) VMD is distinct and contributes substantially to total aerosol volume (up to 70%) and scattering (up to 40%). The results demonstrate that the identified plume at the SPL site has a considerable fraction of supermicron particles (VMD ~3 μm) and, thus, suggest that these particles have a fairly invariant behavior despite transpacific transport. If confirmed in additional studies, this invariant behavior may simplify considerably parameterizations for size-dependent processes associated with dust transport and removal.

Additional affiliation: University of Utah, Salt Lake City, Utah.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Evgueni Kassianov, evgueni.kassianov@pnnl.gov

Abstract

This work is motivated by previous studies of transatlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 μm. The authors examine coarse mode contributions from transpacific transport of dust to North American aerosol properties using a dataset collected at the high-elevation Storm Peak Laboratory (SPL) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility. Collected ground-based data are complemented by quasi-global model simulations and satellite and ground-based observations. The authors identify a major dust event associated mostly with a transpacific plume (about 65% of near-surface aerosol mass) in which the coarse mode with moderate (~3 μm) VMD is distinct and contributes substantially to total aerosol volume (up to 70%) and scattering (up to 40%). The results demonstrate that the identified plume at the SPL site has a considerable fraction of supermicron particles (VMD ~3 μm) and, thus, suggest that these particles have a fairly invariant behavior despite transpacific transport. If confirmed in additional studies, this invariant behavior may simplify considerably parameterizations for size-dependent processes associated with dust transport and removal.

Additional affiliation: University of Utah, Salt Lake City, Utah.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Evgueni Kassianov, evgueni.kassianov@pnnl.gov
Save
  • Burton, S. P., and Coauthors, 2015: Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar. Atmos. Chem. Phys., 15, 13 45313 473, doi:10.5194/acp-15-13453-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cazorla, A., R. Bahadur, K. J. Suski, J. F. Cahill, D. Chand, B. Schmid, V. Ramanathan, and K. A. Prather, 2013: Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements. Atmos. Chem. Phys., 13, 93379350, doi:10.5194/acp-13-9337-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2014: Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem. Aeolian Res., 15, 1530, doi:10.1016/j.aeolia.2014.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choobari, O. A., P. Zawar-Reza, and A. Sturman, 2014: The global distribution of mineral dust and its impacts on the climate system: A review. Atmos. Res., 138, 152165, doi:10.1016/j.atmosres.2013.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., W. G. Collins, P. J. Rasch, V. N. Kapustin, K. Moore, S. Howell, and H. E. Fuelberg, 2001: Dust and pollution transport on global scales: Aerosol measurements and model predictions. J. Geophys. Res., 106, 32 55532 569, doi:10.1029/2000JD900842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cottle, P., K. Strawbridge, I. McKendry, N. O’Neill, and A. Saha, 2013: A pervasive and persistent Asian dust event over North America during spring 2010: Lidar and sunphotometer observations. Atmos. Chem. Phys., 13, 45154527, doi:10.5194/acp-13-4515-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creamean, J. M., and Coauthors, 2013: Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 339, 15721578, doi:10.1126/science.1227279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Foy, B., S. P. Burton, R. A. Ferrare, C. A. Hostetler, J. W. Hair, C. Wiedinmyer, and L. T. Molina, 2011: Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign. Atmos. Chem. Phys., 11, 35433563, doi:10.5194/acp-11-3543-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., 2005: High spectral resolution lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, K. Weitkamp, Ed., Springer, 143–163.

    • Crossref
    • Export Citation
  • Fan, J., and Coauthors, 2014: Aerosol impacts on California winter clouds and precipitation during CalWater 2011: Local pollution versus long-range transported dust. Atmos. Chem. Phys., 14, 81101, doi:10.5194/acp-14-81-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallar, A. G., R. Petersen, E. Andrews, J. Michalsky, I. B. McCubbin, and J. A. Ogren, 2015: Contributions of dust and biomass burning to aerosols at a Colorado mountain-top site. Atmos. Chem. Phys., 15, 13 66513 679, doi:10.5194/acp-15-13665-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, L., J. Michalsky, and J. Berndt, 1994: Automated multifilter rotating shadow-band radiometer: An instrument for optical depth and radiation measurements. Appl. Opt., 33, 51185125, doi:10.1364/AO.33.005118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, doi:10.1016/S0034-4257(98)00031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., C. Zhao, J. Huang, L. R. Leung, Y. Qian, H. Yu, L. Huang, and O. V. Kalashnikova, 2016: Trans-Pacific transport and evolution of aerosols: Evaluation of quasi-global WRF-Chem simulation with multiple observations. Geosci. Model Dev., 9, 17251746, doi:10.5194/gmd-9-1725-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinne, S., and Coauthors, 2006: An AeroCom initial assessment—Optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 18151834, doi:10.5194/acp-6-1815-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lack, D. A., and C. D. Cappa, 2010: Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos. Chem. Phys., 10, 42074220, doi:10.5194/acp-10-4207-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu, 2013: The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech., 6, 29893034, doi:10.5194/amt-6-2989-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, doi:10.5194/gmd-5-709-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, P.-L., and Coauthors, 2015: How does increasing horizontal resolution in a global climate model improve the simulation of aerosol-cloud interactions? Geophys. Res. Lett., 42, 50585065, doi:10.1002/2015GL064183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N., S. Albani, J. F. Kok, S. Engelstaeder, R. Scanza, D. S. Ward, and M. G. Flanner, 2014: The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res., 15, 5371, doi:10.1016/j.aeolia.2013.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malm, W. C., J. F. Sisler, D. Huffman, R. A. Eldred, and T. A. Cahill, 1994: Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res., 99, 13471370, doi:10.1029/93JD02916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, A. G. Hallar, I. B. McCubbin, S. Y. Matrosov, and M. D. Shupe, 2013: Enhanced radar backscattering due to oriented ice particles at 95 GHz during StormVEx. J. Atmos. Oceanic Technol., 30, 23362351, doi:10.1175/JTECH-D-13-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maring, H., D. L. Savoie, M. A. Izaguirre, L. Custals, and J. S. Reid, 2003: Mineral dust aerosol size distribution change during atmospheric transport. J. Geophys. Res., 108, 8592, doi:10.1029/2002JD002536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michalsky, J., F. Denn, C. Flynn, G. Hodges, P. Kiedron, A. Koontz, J. Schlemmer, and S. E. Schwartz, 2010: Climatology of aerosol optical depth in north-central Oklahoma: 1992–2008. J. Geophys. Res., 115, D07203, doi:10.1029/2009JD012197.

    • Search Google Scholar
    • Export Citation
  • Nowottnick, E., P. Colarco, A. da Silva, D. Hlavka, and M. McGill, 2011: The fate of Saharan dust across the Atlantic and implications for a Central American dust barrier. Atmos. Chem. Phys., 11, 84158431, doi:10.5194/acp-11-8415-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obrist, D., A. G. Hallar, I. McCubbin, B. B. Stephens, and T. Rahn, 2008: Atmospheric mercury concentrations at Storm Peak Laboratory in the Rocky Mountains: Evidence for long-range transport from Asia, boundary layer contributions, and plant mercury uptake. Atmos. Environ., 42, 75797589, doi:10.1016/j.atmosenv.2008.06.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, X., and Coauthors, 2015: Observation of the simultaneous transport of Asian mineral dust aerosols with anthropogenic pollutants using a POPC during a long-lasting dust event in late spring 2014. Geophys. Res. Lett., 42, 15931598, doi:10.1002/2014GL062491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., and Coauthors, 2009: Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nat. Geosci., 2, 402405, doi:10.1038/ngeo517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasch, P., and Coauthors, 2000: A comparison of scavenging and deposition processes in global models: Results from the WCRP Cambridge Workshop of 1995. Tellus, 52B, 10251056, doi:10.3402/tellusb.v52i4.17091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, J. S., E. A. Reid, A. Walker, S. Piketh, S. Cliff, A. Al Mandoos, S.-C. Tsay, and T. F. Eck, 2008: Dynamics of southwest Asian dust particle size characteristics with implications for global dust research. J. Geophys. Res., 113, D14212, doi:10.1029/2007JD009752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, M. S., and Coauthors, 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112, D02209, doi:10.1029/2006JD007500.

    • Search Google Scholar
    • Export Citation
  • Ryder, C. L., E. J. Highwood, T. M. Lai, H. Sodemann, and J. H. Marsham, 2013: Impact of atmospheric transport on the evolution of microphysical and optical properties of Saharan dust. Geophys. Res. Lett., 40, 24332438, doi:10.1002/grl.50482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, A., and Coauthors, 2006: Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys. Res. Lett., 33, L24817, doi:10.1029/2006GL027869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., L. Zhang, and M. D. Moran, 2014: Bulk or modal parameterizations for below-cloud scavenging of fine, coarse, and giant particles by both rain and snow. J. Adv. Model. Earth Syst., 6, 13011310, doi:10.1002/2014MS000392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wells, K. C., M. Witek, P. Flatau, S. M. Kreidenweis, and D. L. Westphal, 2007: An analysis of seasonal surface dust aerosol concentrations in the western US (2001–2004): Observations and model predictions. Atmos. Environ., 41, 65856597, doi:10.1016/j.atmosenv.2007.04.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D., M. Vaughan, A. Omar, Y. Hu, K. Powell, Z. Liu, W. Hunt, and S. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, doi:10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelenyuk, A., D. Imre, J. Wilson, Z. Zhang, J. Wang, and K. Mueller, 2015: Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and new software for data visualization and analysis in a geo-spatial context. J. Amer. Soc. Mass Spectrom., 26, 257270, doi:10.1007/s13361-014-1043-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., S. Chen, L. R. Leung, Y. Qian, J. F. Kok, R. A. Zaveri, and J. Huang, 2013: Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmos. Chem. Phys., 13, 10 73310 753, doi:10.5194/acp-13-10733-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 664 326 21
PDF Downloads 226 80 13