Tornado Vortex Structure, Intensity, and Surface Wind Gusts in Large-Eddy Simulations with Fully Developed Turbulence

David S. Nolan Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by David S. Nolan in
Current site
Google Scholar
PubMed
Close
,
Nathan A. Dahl Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Nathan A. Dahl in
Current site
Google Scholar
PubMed
Close
,
George H. Bryan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by George H. Bryan in
Current site
Google Scholar
PubMed
Close
, and
Richard Rotunno National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard Rotunno in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A large-eddy simulation (LES) framework with an “eddy injection” technique has been developed that ensures a majority of turbulent kinetic energy in numerically simulated tornado-like vortices is represented by resolved eddies. This framework is used to explore the relationships between environmental forcing mechanisms, surface boundary conditions, and tornado vortex structure, intensity, and wind gusts. Similar to previous LES studies, results show that the maximum time- and azimuthal-mean tangential winds {V}max can be well in excess of the “thermodynamic speed limit,” which is 66 m s−1 for most of the simulations. Specifically, {V}max exceeds this speed by values ranging from 21% for a large, high-swirl vortex to 59% for a small, low-swirl vortex. Budgets of mean and eddy angular and radial momentum are used to show that resolved eddies in the tornado core act to reduce the wind speed at the location of {V}max, although they do transport angular momentum downward into the lowest levels of the boundary layer, increasing low-level swirl.

Three measures of tornado intensity are introduced: maximum time–azimuthal-mean surface (10 m) horizontal wind speed ({S10}max), maximum 3-s gusts of S10 (S10-3s), and maximum vertical 3-s gusts at 10 m (W10-3s). While {S10}max is considerably less than {V}max, transient features in the boundary layer can generate S10-3s in excess of 150 m s−1, and W10-3s in excess of 100 m s−1. For high-swirl vortices, the extreme gusts are confined closer to the center, well inside the radius of maximum azimuthal-mean surface winds. For the low-swirl vortex, both the strongest mean winds and the extreme gusts are restricted to a very narrow core.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: David S. Nolan, dnolan@rsmas.miami.edu

Abstract

A large-eddy simulation (LES) framework with an “eddy injection” technique has been developed that ensures a majority of turbulent kinetic energy in numerically simulated tornado-like vortices is represented by resolved eddies. This framework is used to explore the relationships between environmental forcing mechanisms, surface boundary conditions, and tornado vortex structure, intensity, and wind gusts. Similar to previous LES studies, results show that the maximum time- and azimuthal-mean tangential winds {V}max can be well in excess of the “thermodynamic speed limit,” which is 66 m s−1 for most of the simulations. Specifically, {V}max exceeds this speed by values ranging from 21% for a large, high-swirl vortex to 59% for a small, low-swirl vortex. Budgets of mean and eddy angular and radial momentum are used to show that resolved eddies in the tornado core act to reduce the wind speed at the location of {V}max, although they do transport angular momentum downward into the lowest levels of the boundary layer, increasing low-level swirl.

Three measures of tornado intensity are introduced: maximum time–azimuthal-mean surface (10 m) horizontal wind speed ({S10}max), maximum 3-s gusts of S10 (S10-3s), and maximum vertical 3-s gusts at 10 m (W10-3s). While {S10}max is considerably less than {V}max, transient features in the boundary layer can generate S10-3s in excess of 150 m s−1, and W10-3s in excess of 100 m s−1. For high-swirl vortices, the extreme gusts are confined closer to the center, well inside the radius of maximum azimuthal-mean surface winds. For the low-swirl vortex, both the strongest mean winds and the extreme gusts are restricted to a very narrow core.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: David S. Nolan, dnolan@rsmas.miami.edu
Save
  • Agee, E. M., J. T. Snow, F. S. Nickerson, P. R. Clare, C. R. Church, and L. A. Schaal, 1977: An observational study of the West Lafayatte, Indiana, tornado of 20 March 1976. Mon. Wea. Rev., 105, 893907, doi:10.1175/1520-0493(1975)103<0318:SSAADF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, C. R., and J. M. Wurman, 2008: Updated mobile radar climatology of supercell tornado structures and dynamics. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 19.4. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_141821.htm.]

  • Atkins, N. T., K. M. Butler, K. R. Flynn, and R. M. Wakimoto, 2014: An integrated damage, visual, and radar analysis of the 2013 Moore, Oklahoma, EF5 tornado. Bull. Amer. Meteor. Soc., 95, 15491561, doi:10.1175/BAMS-D-14-00033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., D. R. Deroche, and A. E. Pietrycha, 2008: In situ observations of the 21 April 2007, Tulia, Texas tornado. Electron. J. Severe Storms Meteor., 3 (3). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/view/39.]

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., 2013: A comparison of wind speed and forest damage associated with tornadoes in northern Arizona. Wea. Forecasting, 28, 408417, doi:10.1175/WAF-D-12-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and J. H. Golden, 1993: A review of tornado observations. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 319–352, doi:10.1029/GM079p0319.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., W. P. Unruh, J. LaDue, H. Stein, and D. Speheger, 1993: Doppler radar wind spectra of supercell tornadoes. Mon. Wea. Rev., 121, 22002222, doi:10.1175/1520-0493(1993)121<2200:DRWSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., W.-C. Lee, M. Bell, C. C. Weiss, and A. L. Pazmany, 2003: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornado-vortex structure. Mon. Wea. Rev., 131, 29682984, doi:10.1175/1520-0493(2003)131<2968:MDROOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., T. Maruyama, R. D. Palmer, C. J. Fulton, and H. B. Bluestein, 2016: Sensitivity of tornado dynamics to soil debris loading. J. Atmos. Sci., 73, 27832801, doi:10.1175/JAS-D-15-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, J. G., and T. Wei, 2010: Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids, 22, 021303, doi:10.1063/1.3319073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., N. A. Dahl, D. S. Nolan, and R. Rotunno, 2017: An eddy injection method for large-eddy simulations of tornado-like vortices. Mon. Wea. Rev., 145, 19371961, doi:10.1175/MWR-D-16-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D., and Coauthors, 2014: 20 May 2013 Moore, Oklahoma, tornado: Damage survey and analysis. Wea. Forecasting, 29, 12291237, doi:10.1175/WAF-D-14-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, N. A., D. S. Nolan, G. H. Bryan, and R. Rotunno, 2017: Using high-resolution simulations to quantify underestimates of tornado intensity from in situ observations. Mon. Wea. Rev., 145, 19631982, doi:10.1175/MWR-D-16-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221.

    • Crossref
    • Export Citation
  • Dowell, D. C., C. R. Alexander, J. M. Wurman, and L. J. Wicker, 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patters and wind-measurement errors. Mon. Wea. Rev., 133, 15011524, doi:10.1175/MWR2934.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., 1994: The thermodynamic speed limit and its violation in axisymmetric numerical simulations of tornado-like vortices. Atmos.–Ocean, 32, 335359, doi:10.1080/07055900.1994.9649501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., 1998: Wind-speed limits in numerical simulated tornadoes with suction vortices. Quart. J. Roy. Meteor. Soc., 124, 23772392, doi:10.1002/qj.49712455110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., 2009: Suction vortices and spiral breakdown in numerical simulations of tornado-like vortices. Atmos. Sci. Lett., 10, 109114, doi:10.1002/asl.217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., and R. Rotunno, 1986: A theory for the maximum windspeeds in tornado-like vortices. J. Atmos. Sci., 43, 23282340, doi:10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1970: The Lubbock tornadoes: A study of suction spots. Weatherwise, 23, 161173, doi:10.1080/00431672.1970.9932888.

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Howells, P. A. C., R. Rotunno, and R. K. Smith, 1988: A comparative study of atmospheric and laboratory-analogue numerical tornado-vortex models. Quart. J. Roy. Meteor. Soc., 114, 801822, doi:10.1002/qj.49711448113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., W. A. Gallus, B. D. Lee, and C. A. Finley, 2013: Analysis of tornado-induced tree-fall using aerial photography from the Joplin, Missouri, and Tuscaloosa-Birmingham, Alabama, tornadoes of 2011. J. Appl. Meteor. Climatol., 52, 10491068, doi:10.1175/JAMC-D-12-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary-layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, doi:10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., and J. Wurman, 2010: Three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998 tornado. J. Atmos. Sci., 67, 30743083, doi:10.1175/2010JAS3416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., and J. Wurman, 2013: The three-dimensional structure and evolution of a tornado boundary layer. Wea. Forecasting, 28, 15521561, doi:10.1175/WAF-D-13-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., R. J. Trapp, and J. Wurman, 2008: An analysis of the axisymmetric three-dimensional low level wind field in a tornado using mobile radar observations. Geophys. Res. Lett., 35, L05805, doi:10.1029/2007GL031851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuai, L., F. L. Haan, W. A. Gallus Jr., and P. P. Sarkar, 2008: CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements. Wind Struct., 11, 7596, doi:10.12989/was.2008.11.2.075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., and J. Wurman, 2005: Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999. J. Atmos. Sci., 62, 23732393, doi:10.1175/JAS3489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., B. J.-D. Jou, P.-L. Chang, and S.-M. Deng, 1999: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Interpretation of Doppler velocity patterns and the GBVTD technique. Mon. Wea. Rev., 127, 24192439, doi:10.1175/1520-0493(1999)127<2419:TCKSRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., 2014: Local roughness effects on tornado dynamics. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 15A.1. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Paper254357.html.]

  • Lewellen, D. C., and W. S. Lewellen, 2007a: Near-surface intensification of tornado vortices. J. Atmos. Sci., 64, 21762194, doi:10.1175/JAS3965.1.

  • Lewellen, D. C., and W. S. Lewellen, 2007b: Near-surface intensification through corner flow collapse. J. Atmos. Sci., 64, 21952209, doi:10.1175/JAS3966.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., W. S. Lewellen, and J. Xia, 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57, 527544, doi:10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., B. Gong, and W. S. Lewellen, 2008: Effects of finescale debris on near-surface tornado dynamics. J. Atmos. Sci., 65, 32473262, doi:10.1175/2008JAS2686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., D. C. Lewellen, and R. I. Sykes, 1997: Large-eddy simulation of a tornado’s interaction with the surface. J. Atmos. Sci., 54, 581605, doi:10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1969: Tornado dynamics. NCAR Manuscript 69-117, 39 pp. [Available online at https://opensky.ucar.edu/islandora/object/manuscripts%3A870/datastream/PDF/view.]

  • Nolan, D. S., 2005: A new scaling for tornado-like vortices. J. Atmos. Sci., 62, 26392645, doi:10.1175/JAS3461.1.

  • Nolan, D. S., 2012: Three-dimensional instabilities in tornado-like vortices with secondary circulations. J. Fluid Mech., 711, 61100, doi:10.1017/jfm.2012.369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2013: On the use of Doppler radar–derived wind fields to diagnose the secondary circulations of tornadoes. J. Atmos. Sci., 70, 11601171, doi:10.1175/JAS-D-12-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and B. F. Farrell, 1999: The structure and dynamics of tornado-like vortices. J. Atmos. Sci., 56, 29082936, doi:10.1175/1520-0469(1999)056<2908:TSADOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and E. W. Uhlhorn, 2014: On the limits of estimating maximum wind speeds in hurricanes. Mon. Wea. Rev., 142, 28142837, doi:10.1175/MWR-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, doi:10.1175/BAMS-D-15-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. P. Davies-Jones, C. A. Doswell, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 9951006, doi:10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1979: A study in tornado-like vortex dynamics. J. Atmos. Sci., 36, 140155, doi:10.1175/1520-0469(1979)036<0140:ASITLV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 2013: The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech., 45, 5984, doi:10.1146/annurev-fluid-011212-140639.

  • Rotunno, R., G. H. Bryan, D. S. Nolan, and N. A. Dahl, 2016: Axisymmetric tornado simulations at high Reynolds number. J. Atmos. Sci., 73, 38433853, doi:10.1175/JAS-D-16-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, doi:10.1175/WAF-D-14-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: A subgrid-scale model for large eddy simulations of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, doi:10.1007/BF00713741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, W.-C. Lee, M. Bell, and A. Pazmany, 2007: Ground-based velocity-track display (GBVTD) analysis of W-band Doppler radar data in a tornado near Stockton, Kansas, on 15 May 1999. Mon. Wea. Rev., 135, 783800, doi:10.1175/MWR3325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., P. Stauffer, W.-C. Lee, N. T. Atkins, and J. Wurman, 2012: Finescale structure of the LaGrange, Wyoming, tornado during VORTEX2: GBVTD and photogrammetric analysis. Mon. Wea. Rev., 140, 33973418, doi:10.1175/MWR-D-12-00036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., T. Cermak, R. Metzger, A. Reinhart, and P. Skinner, 2014: Insights into tornado structure afforded by high-frequency mobile radar. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 9.4. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Paper255350.html.]

  • WSEC, 2006: A recommendation for an enhanced Fujita scale (EF-scale). Texas Tech University Wind Science and Engineering Center Rep., 108 pp. [Available online at http://www.depts.ttu.edu/nwi/Pubs/Fscale/EFScale.pdf.]

  • Wurman, J., 1998: Some preliminary results from the ROTATE-98 tornado experiment. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 120–123.

  • Wurman, J., 2008: Preliminary results and report of the ROTATE-2008 radar/in-situ/mobile mesonet experiment. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 5.4. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142200.htm.]

  • Wurman, J., and C. R. Alexander, 2005: The 30 May Spencer, South Dakota, storm. Part II: Comparison of observed damage and radar-derived winds in the tornadoes. Mon. Wea. Rev., 133, 97119, doi:10.1175/MWR-2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. M. Straka, and E. N. Rasmussen, 1996: Fine-scale Doppler radar observations of tornadoes. Science, 272, 17741777, doi:10.1126/science.272.5269.1774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., C. Alexandre, P. Robinson, and Y. Richardson, 2007: Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas. Bull. Amer. Meteor. Soc., 88, 3146, doi:10.1175/BAMS-88-1-31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, doi:10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, and P. Robinson, 2013: In situ, Doppler radar, and video observations of the interior structure of a tornado and the wind–damage relationship. Bull. Amer. Meteor. Soc., 94, 835846, doi:10.1175/BAMS-D-12-00114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, J., W. S. Lewellen, and D. C. Lewellen, 2003: Influence of Mach number on tornado corner flow dynamics. J. Atmos. Sci., 60, 28202825, doi:10.1175/1520-0469(2003)060<2820:IOMNOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, doi:10.1175/MWR-D-10-05017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1183 258 27
PDF Downloads 867 228 32