The Microphysical Building Blocks of Low-Level Potential Vorticity Anomalies in an Idealized Extratropical Cyclone

Bas Crezee Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Bas Crezee in
Current site
Google Scholar
PubMed
Close
,
Hanna Joos Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Hanna Joos in
Current site
Google Scholar
PubMed
Close
, and
Heini Wernli Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Heini Wernli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Diabatically generated low-level potential vorticity (PV) anomalies in extratropical cyclones enhance near-surface winds and influence the cyclone’s development. Positive and negative PV anomalies in the warm-frontal region of an extratropical cyclone, simulated with an idealized moist baroclinic channel model, are investigated to identify the microphysical processes that produce them. Using a novel method based on backward trajectories from the PV anomalies, the contribution of different microphysical processes to the formation of the anomalies is quantified. It is found that, for each anomaly, typically one specific microphysical process takes the leading role in its diabatic generation. A large but rather weak low- and midlevel positive anomaly is produced by depositional growth of ice and snow. Two smaller but stronger positive anomalies at lower levels are generated mainly by in-cloud condensational heating at the warm front and below-cloud rain evaporation and snow melting 200 km farther north. In addition, near-surface negative anomalies are produced by snow melting and snow sublimation. In summary, this idealized study reveals that (i) a variety of microphysical processes are involved in generating the complex mesoscale PV structures along the warm front; (ii) the model representation of these processes, some of them still insufficiently understood and parameterized, therefore matters for an accurate prediction of these features; (iii) below-cloud processes are also relevant for PV anomalies located in clouds, owing to accumulation of diabatic PV tendencies along ascending air parcels; and (iv) the diabatic history of the air parcels is essential in order to explain the observed PV pattern.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Bas Crezee, bas.crezee@env.ethz.ch

Abstract

Diabatically generated low-level potential vorticity (PV) anomalies in extratropical cyclones enhance near-surface winds and influence the cyclone’s development. Positive and negative PV anomalies in the warm-frontal region of an extratropical cyclone, simulated with an idealized moist baroclinic channel model, are investigated to identify the microphysical processes that produce them. Using a novel method based on backward trajectories from the PV anomalies, the contribution of different microphysical processes to the formation of the anomalies is quantified. It is found that, for each anomaly, typically one specific microphysical process takes the leading role in its diabatic generation. A large but rather weak low- and midlevel positive anomaly is produced by depositional growth of ice and snow. Two smaller but stronger positive anomalies at lower levels are generated mainly by in-cloud condensational heating at the warm front and below-cloud rain evaporation and snow melting 200 km farther north. In addition, near-surface negative anomalies are produced by snow melting and snow sublimation. In summary, this idealized study reveals that (i) a variety of microphysical processes are involved in generating the complex mesoscale PV structures along the warm front; (ii) the model representation of these processes, some of them still insufficiently understood and parameterized, therefore matters for an accurate prediction of these features; (iii) below-cloud processes are also relevant for PV anomalies located in clouds, owing to accumulation of diabatic PV tendencies along ascending air parcels; and (iv) the diabatic history of the air parcels is essential in order to explain the observed PV pattern.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Bas Crezee, bas.crezee@env.ethz.ch
Save
  • Ahmadi-Givi, F., G. C. Graig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130, 295323, doi:10.1256/qj.02.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, M. C., and D. B. Parsons, 1996: Microphysical processes associated with intense frontal rainbands and the effect of evaporation and melting on frontal dynamics. J. Atmos. Sci., 53, 15691586, doi:10.1175/1520-0469(1996)053<1569:MPAWIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., S. E. Belcher, and R. S. Plant, 2015: Friction in mid-latitude cyclones: An Ekman-PV mechanism. Atmos. Sci. Lett., 16, 103109, doi:10.1002/asl2.526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., and S. L. Gray, 2015: A diabatically generated potential vorticity structure near the extratropical tropopause in three simulated extratropical cyclones. Mon. Wea. Rev., 143, 23372347, doi:10.1175/MWR-D-14-00092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., S. L. Gray, and J. Methven, 2013: Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Quart. J. Roy. Meteor. Soc., 139, 12701282, doi:10.1002/qj.2037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., and R. A. A. Franks, 1991: The evaporation of frontal and other stratiform precipitation. Quart. J. Roy. Meteor. Soc., 117, 10571080, doi:10.1002/qj.49711750109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., H. W. Lean, N. M. Roberts, and R. M. Forbes, 2000: Dynamical effects of ice sublimation in a frontal wave. Quart. J. Roy. Meteor. Soc., 126, 24052434, doi:10.1002/qj.49712656804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, I. M., A. J. Thorpe, and C. H. Bishop, 1992: The role of diffusive effects on potential vorticity in fronts. Quart. J. Roy. Meteor. Soc., 118, 629647, doi:10.1002/qj.49711850603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coronel, B., D. Ricard, G. Rivière, and P. Arbogast, 2015: Role of moist processes in the tracks of idealized midlatitude surface cyclones. J. Atmos. Sci., 72, 29792996, doi:10.1175/JAS-D-14-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, H. C., C. Schär, and H. Wernli, 1991: The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci., 48, 16661689, doi:10.1175/1520-0469(1991)048<1666:TPOFAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dearden, C., G. Vaughan, T. Tsai, and J.-P. Chen, 2016: Exploring the diabatic role of ice microphysical processes in two North Atlantic summer cyclones. Mon. Wea. Rev., 144, 12491272, doi:10.1175/MWR-D-15-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doms, G., and Coauthors, 2011: A description of the nonhydrostatic regional COSMO model, part II: Physical parameterization. Consortium for Small-Scale Modelling Tech. Rep. LM F90 4.20, Deutscher Wetterdienst, 161 pp. [Available online at http://www2.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf.]

  • Eliassen, A., and E. Kleinschmidt, 1957: Dynamic meteorology. Geophysik II, S. Flügge and J. Bartels, Eds., Handbuch der Physik, Vol. 10, Springer, 1–154.

  • Ertel, H., 1942: Ein neuer hydrodynamischer wirbelsatz. Meteor. Z., 59, 277281.

  • Forbes, R. M., and P. A. Clark, 2003: Sensitivity of extratropical cyclone mesoscale structure to the parametrization of ice microphysical processes. Quart. J. Roy. Meteor. Soc., 129, 11231148, doi:10.1256/qj.01.171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, R. M., and R. J. Hogan, 2006: Observations of the depth of ice particle evaporation beneath frontal cloud to improve NWP modelling. Quart. J. Roy. Meteor. Soc., 132, 865883, doi:10.1256/qj.04.187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and P. Berrisford, 1988: A potential vorticity perspective of the storm of 15–16 October 1987. Weather, 43, 122129, doi:10.1002/j.1477-8696.1988.tb03890.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., M. McIntyre, and A. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.-C., and K. A. Emanuel, 1991: The effects of evaporation on frontal circulations. J. Atmos. Sci., 48, 619628, doi:10.1175/1520-0469(1991)048<0619:TEOEOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huo, Z., D.-L. Zhang, and J. R. Gyakum, 1999: Interaction of potential vorticity anomalies in extratropical cyclogenesis. Part I: Static piecewise inversion. Mon. Wea. Rev., 127, 25462562, doi:10.1175/1520-0493(1999)127<2546:IOPVAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, A. L., and S. C. van den Heever, 2014: The role of latent heating in warm frontogenesis. Quart. J. Roy. Meteor. Soc., 140, 139150, doi:10.1002/qj.2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407418, doi:10.1002/qj.934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384, doi:10.1175/1520-0493(1991)119<0368:TIBBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1956: On the contribution of heat released by condensation to the change in pressure pattern. J. Meteor. Soc. Japan, 34, 308320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marecal, V., and Y. Lemaitre, 1995: Importance of microphysical processes in the dynamics of a CSI mesoscale frontal cloud band. Quart. J. Roy. Meteor. Soc., 121, 301318, doi:10.1002/qj.49712152205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., F. Weidle, and S. L. Gray, 2010: Sting jets in simulations of a real cyclone by two mesoscale models. Mon. Wea. Rev., 138, 40544075, doi:10.1175/2010MWR3290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., M. A. Shapiro, and L. S. Fedor, 1993: The life cycle of an extratropical marine cyclone. Part II: Mesoscale structure and diagnostics. Mon. Wea. Rev., 121, 21772199, doi:10.1175/1520-0493(1993)121<2177:TLCOAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: The role of snow sublimation in frontogenesis. Quart. J. Roy. Meteor. Soc., 121, 763782, doi:10.1002/qj.49712152403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., M. T. Stoelinga, and Y.-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120, 893913, doi:10.1175/1520-0493(1992)120<0893:AMASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossa, A. M., H. Wernli, and H. C. Davies, 2000: Growth and decay of an extra-tropical cyclone’s PV-tower. Meteor. Atmos. Phys., 73, 139156, doi:10.1007/s007030050070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 3855, doi:10.1357/002224039806649023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schemm, S., H. Wernli, and L. Papritz, 2013: Warm conveyor belts in idealized moist baroclinic wave simulations. J. Atmos. Sci., 70, 627652, doi:10.1175/JAS-D-12-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. A. Keyser, 1990: Fronts, jet streams, and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

    • Crossref
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1979: The downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 36, 12391254, doi:10.1175/1520-0469(1979)036<1239:TDAUDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool version 2.0. Geosci. Model Dev., 8, 25692586, doi:10.5194/gmd-8-2569-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schättler, H. W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596, doi:10.1007/s00703-001-0592-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874, doi:10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., C. A. Lin, and R. E. Stewart, 1988a: Mesoscale circulations forced by melting snow. Part I: Basic simulations and dynamics. J. Atmos. Sci., 45, 16291641, doi:10.1175/1520-0469(1988)045<1629:MCFBMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., R. E. Stewart, and C. A. Lin, 1988b: Mesoscale circulations forced by melting snow. Part II: Application to meteorological features. J. Atmos. Sci., 45, 16421650, doi:10.1175/1520-0469(1988)045<1642:MCFBMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm “Lothar” (24–26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405429, doi:10.1256/003590002321042036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., L. W. Uccellini, and K. F. Brill, 1988: A model-based diagnostic study of the rapid development phase of the Presidents’s Day cyclone. Mon. Wea. Rev., 116, 23372365, doi:10.1175/1520-0493(1988)116<2337:AMBDSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 564 175 9
PDF Downloads 348 71 3