On the Development of Above-Anvil Cirrus Plumes in Extratropical Convection

Cameron R. Homeyer School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Cameron R. Homeyer in
Current site
Google Scholar
PubMed
Close
,
Joel D. McAuliffe Department of Geography, Planning, and Environment, East Carolina University, Greenville, North Carolina

Search for other papers by Joel D. McAuliffe in
Current site
Google Scholar
PubMed
Close
, and
Kristopher M. Bedka NASA Langley Research Center, Hampton, Virginia

Search for other papers by Kristopher M. Bedka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Expansive cirrus clouds present above the anvils of extratropical convection have been observed in satellite and aircraft-based imagery for several decades. Despite knowledge of their occurrence, the precise mechanisms and atmospheric conditions leading to their formation and maintenance are not entirely known. Here, the formation of these cirrus “plumes” is examined using a combination of satellite imagery, four-dimensional ground-based radar observations, assimilated atmospheric states from a state-of-the-art reanalysis, and idealized numerical simulations with explicitly resolved convection. Using data from 20 recent events (2013–present), it is found that convective cores of storms with above-anvil cirrus plumes reach altitudes 1–6 km above the tropopause. Thus, it is likely that these clouds represent the injection of cloud material into the lower stratosphere. Comparison of storms with above-anvil cirrus plumes and observed tropopause-penetrating convection without plumes reveals an association with large vector differences between the motion of a storm and the environmental wind in the upper troposphere and lower stratosphere (UTLS), suggesting that gravity wave breaking and/or stretching of the tropopause-penetrating cloud are/is more prevalent in plume-producing storms. A weak relationship is found between plume occurrence and the stability of the lower stratosphere (or tropopause structure), and no relationship is found with the duration of stratospheric penetration or stratospheric humidity. Idealized model simulations of tropopause-penetrating convection with small and large magnitudes of storm-relative wind in the UTLS are found to reproduce the observationally established storm-relative wind relationship and show that frequent gravity wave breaking is the primary mechanism responsible for plume formation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-16-0269.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 24 March 2022 to correct a typographical error that occurred in the text and in Figs. 10 and 12 when originally published. The unit “ppmv” has now been replaced by “ppmm”.

Corresponding author e-mail: Cameron R. Homeyer, chomeyer@ou.edu

Abstract

Expansive cirrus clouds present above the anvils of extratropical convection have been observed in satellite and aircraft-based imagery for several decades. Despite knowledge of their occurrence, the precise mechanisms and atmospheric conditions leading to their formation and maintenance are not entirely known. Here, the formation of these cirrus “plumes” is examined using a combination of satellite imagery, four-dimensional ground-based radar observations, assimilated atmospheric states from a state-of-the-art reanalysis, and idealized numerical simulations with explicitly resolved convection. Using data from 20 recent events (2013–present), it is found that convective cores of storms with above-anvil cirrus plumes reach altitudes 1–6 km above the tropopause. Thus, it is likely that these clouds represent the injection of cloud material into the lower stratosphere. Comparison of storms with above-anvil cirrus plumes and observed tropopause-penetrating convection without plumes reveals an association with large vector differences between the motion of a storm and the environmental wind in the upper troposphere and lower stratosphere (UTLS), suggesting that gravity wave breaking and/or stretching of the tropopause-penetrating cloud are/is more prevalent in plume-producing storms. A weak relationship is found between plume occurrence and the stability of the lower stratosphere (or tropopause structure), and no relationship is found with the duration of stratospheric penetration or stratospheric humidity. Idealized model simulations of tropopause-penetrating convection with small and large magnitudes of storm-relative wind in the UTLS are found to reproduce the observationally established storm-relative wind relationship and show that frequent gravity wave breaking is the primary mechanism responsible for plume formation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-16-0269.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 24 March 2022 to correct a typographical error that occurred in the text and in Figs. 10 and 12 when originally published. The unit “ppmv” has now been replaced by “ppmm”.

Corresponding author e-mail: Cameron R. Homeyer, chomeyer@ou.edu

Supplementary Materials

    • Supplemental Materials (ZIP 361.02 MB)
Save
  • Adler, R. F. , D. D. Fenn , and D. A. Moore , 1981: Spiral feature observed at top of rotating thunderstorm. Mon. Wea. Rev., 109, 11241129, doi:10.1175/1520-0493(1981)109<1124:SFOATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F. , M. J. Markus , D. D. Fenn , G. Szejwach , and W. E. Shenk , 1983: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Climate Appl. Meteor., 22, 579593, doi:10.1175/1520-0450(1983)022<0579:TTSOBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F. , M. J. Markus , and D. D. Fenn , 1985: Detection of severe Midwest thunderstorms using geosynchronous satellite data. Mon. Wea. Rev., 113, 769781, doi:10.1175/1520-0493(1985)113<0769:DOSMTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G. , D. M. Wilmouth , J. B. Smith , and D. S. Sayres , 2012: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science, 337, 835839, doi:10.1126/science.1222978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M. , C. Wang , R. Rogers , L. D. Carey , W. Feltz , and J. Kanak , 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 super rapid scan datasets. Wea. Forecasting, 30, 571590, doi:10.1175/WAF-D-14-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner, J. C. , S. A. Ackerman , A. S. Bachmeier , and R. M. Rabin , 2007: A quantitative analysis of the enhanced-V feature in relation to severe weather. Wea. Forecasting, 22, 853872, doi:10.1175/WAF1022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D. , and R. L. Alberty , 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691687, doi:10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P. , and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D. , M.-S. Yao , and J. Jonas , 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, L16703, doi:10.1029/2007GL030525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M. , and G. Wiener , 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, doi:10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009: ERA-Interim project. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed May 2015–May 2016, doi:10.5065/D6CR5RD9.

    • Crossref
    • Export Citation
  • Forster, P. M. F. , and K. P. Shine , 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26, 33093312, doi:10.1029/1999GL010487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T. , 1982: Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe thunderstorms. J. Meteor. Soc. Japan, 60, 355368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A. , P. Hoor , L. L. Pan , W. J. Randel , M. I. Hegglin , and T. Birner , 2011: The extratropical upper troposphere and lower stratosphere. Rev. Geophys., 49, RG3003, doi:10.1029/2011RG000355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, L. , S. Fu , L. Zhao , Y. Zheng , H. Wang , and Y. Lin , 2009: 3D convective storm identification, tracking, and forecasting—An enhanced TITAN algorithm. J. Atmos. Oceanic Technol., 26, 719732, doi:10.1175/2008JTECHA1084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handwerker, J. , 2002: Cell tracking with TRACE3D—A new algorithm. Atmos. Res., 61, 1534, doi:10.1016/S0169-8095(01)00100-4.

  • Homeyer, C. R. , 2014: Formation of the enhanced-V infrared cloud-top feature from high-resolution three-dimensional radar observations. J. Atmos. Sci., 71, 332348, doi:10.1175/JAS-D-13-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R. , and M. R. Kumjian , 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, doi:10.1175/JAS-D-13-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R. , L. L. Pan , and M. C. Barth , 2014a: Transport from convective overshooting of the extratropical tropopause and the role of large-scale lower stratosphere stability. J. Geophys. Res. Atmos., 119, 22202240, doi:10.1002/2013JD020931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R. , and Coauthors, 2014b: Convective transport of water vapor into the lower stratosphere observed during double-tropopause events. J. Geophys. Res. Atmos., 119, 10 94110 958, doi:10.1002/2014JD021485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J. , J. S. Delamere , E. J. Mlawer , M. W. Shephard , S. A. Clough , and W. D. Collins , 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J. H. , H. Su , C. Zhai , L. Wu , K. Minschwaner , A. M. Molod , and A. M. Tompkins , 2015: An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations. J. Geophys. Res. Atmos., 120, 11 46811 485, doi:10.1002/2015JD023752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. T. , P. L. MacKeen , A. Witt , E. D. Mitchell , G. J. Stumpf , M. D. Eilts , and K. W. Thomas , 1998: The Storm Cell Identification and Tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263276, doi:10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A. , D. J. Wuebbles , and J. A. Logan , 1990: Radiative forcing of climate by changes in the vertical distribution of ozone. J. Geophys. Res., 95, 99719981, doi:10.1029/JD095iD07p09971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P. , and J. C. Knievel , 2005: Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection. J. Atmos. Sci., 62, 34083419, doi:10.1175/JAS3513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P. , and M. W. Moncrieff , 2008: Stratospheric gravity waves generated by multiscale tropical convection. J. Atmos. Sci., 65, 25982614, doi:10.1175/2007JAS2601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P. , R. D. Sharman , T. L. Clark , and H.-M. Hsu , 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 12971321, doi:10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levizzani, V. , and M. Setvák , 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53, 361369, doi:10.1175/1520-0469(1996)053<0361:MHRSOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mack, R. A. , A. F. Hasler , and R. F. Adler , 1983: Thunderstorm cloud top observations using satellite stereoscopy. Mon. Wea. Rev., 111, 19491964, doi:10.1175/1520-0493(1983)111<1949:TCTOUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R. , C. L. Ziegler , and E. C. Bruning , 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, doi:10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCann, D. W. , 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887894, doi:10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P. , and J. F. W. Purdom , 1994: Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc., 75, 757781, doi:10.1175/1520-0477(1994)075<0757:IGITFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negri, A. J. , 1982: Cloud-top structure of tornadic storms on 10 April 1979 from rapid scan and stereo satellite observations. Bull. Amer. Meteor. Soc., 63, 11511159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 1994: NOAA Geostationary Operational Environmental Satellite Imager Data. NOAA Comprehensive Large Array-Data Stewardship System, accessed May 2015–May 2016. [Available online at https://www.class.ncdc.noaa.gov/saa/products/search?sub_id=0&datatype_family=GVAR_IMG&submit.x=9&submit.y=2.]

  • NOAA/NWS/ROC, 1991: NOAA Next Generation Radar (NEXRAD) Level II Base Data. NOAA National Centers for Environmental Information, accessed May 2015–May 2016, doi:10.7289/V5W9574V.

    • Crossref
    • Export Citation
  • Romps, D. M. , J. T. Seeley , D. Vollaro , and J. Molinari , 2014: Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851854, doi:10.1126/science.1259100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D. , 1987: Objective method for analysis and tracking of convective cells as seen by radar. J. Atmos. Oceanic Technol., 4, 422434, doi:10.1175/1520-0426(1987)004<0422:OMFAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Setvák, M. , and C. A. Doswell , 1991: The AVHRR channel 3 cloud top reflectivity of convective storms. Mon. Wea. Rev., 119, 841847, doi:10.1175/1520-0493(1991)119<0841:TACCTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Setvák, M. , K. Bedka , D. T. Lindsey , A. Sokol , Z. Charvát , J. Šťástka , and P. K. Wang , 2013: A-Train observations of deep convective storm tops. Atmos. Res., 123, 229248, doi:10.1016/j.atmosres.2012.06.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C. , and Coauthors., 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Solomon, D. L. , K. P. Bowman , and C. R. Homeyer , 2016: Tropopause-penetrating convection from three-dimensional gridded NEXRAD data. J. Appl. Meteor. Climatol., 55, 465478, doi:10.1175/JAMC-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S. , K. H. Rosenlof , R. W. Portmann , J. S. Daniel , S. M. Davis , T. J. Sanford , and G.-K. Plattner , 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D. , M. Z. Hansen , and J. Simpson , 1983: The structure and phase of cloud tops as observed by polarization lidar. J. Climate Appl. Meteor., 22, 13191331, doi:10.1175/1520-0450(1983)022<1319:TSAPOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J. , and K. A. Hoogewind , 2016: The realization of extreme tornadic storm events under future anthropogenic climate change. J. Climate, 29, 52515265, doi:10.1175/JCLI-D-15-0623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J. , N. S. Diffenbaugh , H. E. Brooks , M. E. Baldwin , E. D. Robinson , and J. S. Pal , 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 71919 723, doi:10.1073/pnas.0705494104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K. , 2003: Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108, 4194, doi:10.1029/2002JD002581.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K. , K.-Y. Cheng , M. Setvák , and C.-K. Wang , 2016: The origin of the gullwing-shaped cirrus above an Argentinian thunderstorm as seen in CALIPSO images. J. Geophys. Res. Atmos., 121, 37293738, doi:10.1002/2015JD024111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L. , and J. B. Klemp , 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Meteorology—A three-dimensional science: Second session of the commission for aerology. WMO Bull., 4, 134138.

All Time Past Year Past 30 Days
Abstract Views 2 0 0
Full Text Views 850 254 16
PDF Downloads 706 174 8