Note on Analyzing Perturbation Growth in a Tropical Cyclone–Like Vortex Radiating Inertia–Gravity Waves

David A. Schecter NorthWest Research Associates, Boulder, Colorado

Search for other papers by David A. Schecter in
Current site
Google Scholar
PubMed
Close
and
Konstantinos Menelaou Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Konstantinos Menelaou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A method is outlined for quantitatively assessing the impact of inertia–gravity wave radiation on the multimechanistic instability modes of a columnar stratified vortex that resembles an intense tropical cyclone. The method begins by decomposing the velocity field into one part that is formally associated with sources inside the vortex and another part that is attributed to radiation. The relative importance of radiation is assessed by comparing the rates at which the two partial velocity fields act to amplify the perturbation of an arbitrary tracer field—such as potential vorticity—inside the vortex. Further insight is gained by decomposing the formal vortex contribution to the amplification rate into subparts that are primarily associated with distinct vortex Rossby waves and critical-layer perturbations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: David A. Schecter, schecter@nwra.com

Abstract

A method is outlined for quantitatively assessing the impact of inertia–gravity wave radiation on the multimechanistic instability modes of a columnar stratified vortex that resembles an intense tropical cyclone. The method begins by decomposing the velocity field into one part that is formally associated with sources inside the vortex and another part that is attributed to radiation. The relative importance of radiation is assessed by comparing the rates at which the two partial velocity fields act to amplify the perturbation of an arbitrary tracer field—such as potential vorticity—inside the vortex. Further insight is gained by decomposing the formal vortex contribution to the amplification rate into subparts that are primarily associated with distinct vortex Rossby waves and critical-layer perturbations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: David A. Schecter, schecter@nwra.com
Save
  • Antkowiak, A., and P. Brancher, 2004: Transient energy growth for the Lamb–Oseen vortex. Phys. Fluids, 16, L1L4, doi:10.1063/1.1626123.

  • Bishop, C. H., 1996: Domain-independent attribution. Part I: Reconstructing the wind from estimates of vorticity and divergence using free space Green’s functions. J. Atmos. Sci., 53, 241252, doi:10.1175/1520-0469(1996)053<0241:DIAPIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briggs, R. J., J. D. Daugherty, and R. H. Levy, 1970: Role of Landau damping in crossed-field electron beams and inviscid shear flow. Phys. Fluids, 13, 421432, doi:10.1063/1.1692936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, doi:10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 30733091, doi:10.1175/MWR3250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, R., 1994: The instability of an axisymmetric vortex with monotonic potential vorticity in rotating shallow water. J. Fluid Mech., 280, 303334, doi:10.1017/S0022112094002946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., and W. H. Schubert, 2010: Adiabatic rearrangement of hollow PV towers. J. Adv. Model. Earth Syst., 2 (4), doi:10.3894/JAMES.2010.2.8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., B. D. McNoldy, and W. H. Schubert, 2012: Observed inner-core structural variability in Hurricane Dolly (2008). Mon. Wea. Rev., 140, 40664077, doi:10.1175/MWR-D-12-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., and D. S. Nolan, 2008: The Rossby-inertia-buoyancy instability in baroclinic vortices. Phys. Fluids, 20, 096602, doi:10.1063/1.2980354.

  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, doi:10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, doi:10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, doi:10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y. C., and W. M. Frank, 2005: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part I: Dry experiments. J. Atmos. Sci., 62, 39553973, doi:10.1175/JAS3575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, R. H., 1965: Diocotron instability in a cylindrical geometry. Phys. Fluids, 8, 12881295, doi:10.1063/1.1761400.

  • Menelaou, K., D. A. Schecter, and M. K. Yau, 2016: On the relative contribution of inertia–gravity wave radiation to asymmetric instabilities in tropical cyclone–like vortices. J. Atmos. Sci., 73, 33453370, doi:10.1175/JAS-D-15-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michalke, A., and A. Timme, 1967: On the inviscid instability of certain two-dimensional vortex-type flows. J. Fluid Mech., 29, 647666, doi:10.1017/S0022112067001090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and L. J. Shapiro, 1995: Generalized Charney–Stern and Fjortoft theorems for rapidly rotating vortices. J. Atmos. Sci., 52, 18291833, doi:10.1175/1520-0469(1995)052<1829:GCAFTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. M. Bell, M. L. Black, and S. D. Aberson, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 13351347, doi:10.1175/BAMS-87-10-1335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1986: The structure of polygonal eye of a typhoon. J. Meteor. Soc. Japan, 64, 913921, doi:10.2151/jmsj1965.64.6_913.

  • Naylor, J., and D. A. Schecter, 2014: Evaluation of the impact of moist convection on the development of asymmetric inner core instabilities in simulated tropical cyclones. J. Adv. Model. Earth Syst., 6, 10271048, doi:10.1002/2014MS000366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and B. F. Farrell, 1999: Generalized stability analysis of asymmetric disturbances in one- and two-celled vortices maintained by radial inflow. J. Atmos. Sci., 56, 12821307, doi:10.1175/1520-0469(1999)056<1282:GSAOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., and P. Billant, 2013: Instabilities and waves on a columnar vortex in a strongly stratified and rotating fluid. Phys. Fluids, 25, 086601, doi:10.1063/1.4816512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., M. T. Montgomery, J. C. McWilliams, and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 29912 341, doi:10.5194/acp-13-12299-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and V. Zeitlin, 2002: Internal gravity wave emission from a pancake vortex: An example of wave–vortex interaction in strongly stratified flows. Phys. Fluids, 14, 12591268, doi:10.1063/1.1448297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, doi:10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., A. J. Thorpe, and C. H. Bishop, 1997: The role of the environmental flow in the development of secondary frontal cyclones. Quart. J. Roy. Meteor. Soc., 123, 16531675, doi:10.1002/qj.49712354210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2013: NOAA’s Hurricane Intensity Forecasting Experiment: A progress report. Bull. Amer. Meteor. Soc., 94, 859882, doi:10.1175/BAMS-D-12-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., J. P. Kossin, W. H. Schubert, and P. J. Mulero, 2009: Internal control of hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66, 133147, doi:10.1175/2008JAS2717.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., 1992: Vortex Dynamics. Cambridge University Press, 311 pp.

    • Crossref
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2004: Damping and pumping of a vortex Rossby wave in a monotonic cyclone: Critical layer stirring versus inertia–buoyancy wave emission. Phys. Fluids, 16, 13341348, doi:10.1063/1.1651485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., D. H. E. Dubin, A. C. Cass, C. F. Driscoll, I. M. Lansky, and T. M. O’Neil, 2000: Inviscid damping of asymmetries on a two-dimensional vortex. Phys. Fluids, 12, 23972412, doi:10.1063/1.1289505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 33223335, doi:10.1175/1520-0469(1993)050<3322:ATDBTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Wang, and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64, 11651188, doi:10.1175/JAS3971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 125 35 1
PDF Downloads 69 19 1