The Stability of Mars’s Annular Polar Vortex

William J. M. Seviour Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by William J. M. Seviour in
Current site
Google Scholar
PubMed
Close
,
Darryn W. Waugh Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Darryn W. Waugh in
Current site
Google Scholar
PubMed
Close
, and
Richard K. Scott School of Mathematics and Statistics, University of St Andrews, St Andrews, United Kingdom

Search for other papers by Richard K. Scott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Martian polar atmosphere is known to have a persistent local minimum in potential vorticity (PV) near the winter pole, with a region of high PV encircling it. This finding is surprising, since an isolated band of PV is barotropically unstable, a result going back to Rayleigh. Here the stability of a Mars-like annular vortex is investigated using numerical integrations of the rotating shallow-water equations. The mode of instability and its growth rate is shown to depend upon the latitude and width of the annulus. By introducing thermal relaxation toward an annular equilibrium profile with a time scale similar to that of the instability, a persistent annular vortex with similar characteristics as that observed in the Martian atmosphere can be simulated. This time scale, typically 0.5–2 sols, is similar to radiative relaxation time scales for Mars’s polar atmosphere. The persistence of an annular vortex is also shown to be robust to topographic forcing, as long as it is below a certain amplitude. It is therefore proposed that the persistence of this barotropically unstable annular vortex is permitted owing to the combination of short radiative relaxation time scales and relatively weak topographic forcing in the Martian polar atmosphere.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: William J. M. Seviour, wseviou1@jhu.edu

Abstract

The Martian polar atmosphere is known to have a persistent local minimum in potential vorticity (PV) near the winter pole, with a region of high PV encircling it. This finding is surprising, since an isolated band of PV is barotropically unstable, a result going back to Rayleigh. Here the stability of a Mars-like annular vortex is investigated using numerical integrations of the rotating shallow-water equations. The mode of instability and its growth rate is shown to depend upon the latitude and width of the annulus. By introducing thermal relaxation toward an annular equilibrium profile with a time scale similar to that of the instability, a persistent annular vortex with similar characteristics as that observed in the Martian atmosphere can be simulated. This time scale, typically 0.5–2 sols, is similar to radiative relaxation time scales for Mars’s polar atmosphere. The persistence of an annular vortex is also shown to be robust to topographic forcing, as long as it is below a certain amplitude. It is therefore proposed that the persistence of this barotropically unstable annular vortex is permitted owing to the combination of short radiative relaxation time scales and relatively weak topographic forcing in the Martian polar atmosphere.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: William J. M. Seviour, wseviou1@jhu.edu
Save
  • Achterberg, R. K., P. J. Gierasch, B. J. Conrath, F. M. Flasar, and C. A. Nixon, 2011: Temporal variations of Titan’s middle-atmospheric temperatures from 2004 to 2009 observed by Cassini/CIRS. Icarus, 211, 686698, doi:10.1016/j.icarus.2010.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Banfield, D., B. Conrath, P. Gierasch, R. John Wilson, and M. Smith, 2004: Traveling waves in the martian atmosphere from MGS TES Nadir data. Icarus, 170, 365403, doi:10.1016/j.icarus.2004.03.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, J. R., 1984: Linear baroclinic instability in the Martian atmosphere. J. Atmos. Sci., 41, 15361550, doi:10.1175/1520-0469(1984)041<1536:LBIITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, J. R., and R. M. Haberle, 1996: The Martian zonal-mean circulation: Angular momentum and potential vorticity structure in GCM simulations. J. Atmos. Sci., 53, 31433156, doi:10.1175/1520-0469(1996)053<3143:TMZMCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and P. Chen, 1994: Mixing by barotropic instability in a nonlinear model. J. Atmos. Sci., 51, 36923705, doi:10.1175/1520-0469(1994)051<3692:MBBIIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colaprete, A., J. R. Barnes, R. M. Haberle, and F. Montmessin, 2008: CO2 clouds, CAPE and convection on Mars: Observations and general circulation modeling. Planet. Space Sci., 56, 150180, doi:10.1016/j.pss.2007.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., 1986: The nonlinear evolution of rotating configurations of uniform vorticity. J. Fluid Mech., 172, 157182, doi:10.1017/S0022112086001696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and L. M. Polvani, 1992: The roll-up of vorticity strips on the surface of a sphere. J. Fluid Mech., 234, 4769, doi:10.1017/S0022112092000697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., J. Ma, and X. Zhu, 2011: Scale-dependent infrared radiative damping rates on Mars and their role in the deposition of gravity-wave momentum flux. Icarus, 211, 429442, doi:10.1016/j.icarus.2010.10.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., R. J. Wilson, R. N. Hoffman, M. J. Hoffman, T. Miyoshi, K. Ide, T. McConnochie, and E. Kalnay, 2012: Ensemble Kalman filter data assimilation of Thermal Emission Spectrometer temperature retrievals into a Mars GCM. J. Geophys. Res., 117, E11008, doi:10.1029/2012JE004097.

    • Search Google Scholar
    • Export Citation
  • Guzewich, S. D., A. D. Toigo, and D. W. Waugh, 2016: The effect of dust on the martian polar vortices. Icarus, 278, 100118, doi:10.1016/j.icarus.2016.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and P. J. Phillips, 1990: A barotropic model of the interaction between the Hadley cell and a Rossby wave. J. Atmos. Sci., 47, 856869, doi:10.1175/1520-0469(1990)047<0856:ABMOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., W. H. Schubert, Y.-H. Chen, H.-C. Kuo, and M. S. Peng, 2014: Hurricane eyewall evolution in a forced shallow-water model. J. Atmos. Sci., 71, 16231643, doi:10.1175/JAS-D-13-0303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollingsworth, J. L., and J. R. Barnes, 1996: Forced stationary planetary waves in Mars’s winter atmosphere. J. Atmos. Sci., 53, 428448, doi:10.1175/1520-0469(1996)053<0428:FSPWIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishioka, K., and S. Yoden, 1994: Non-linear evolution of a barotropically unstable circumpolar vortex. J. Meteor. Soc. Japan, 72, 6380, doi:10.2151/jmsj1965.72.1_63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, I. N., 1994: Introduction to Circulating Atmospheres. Cambridge University Press, 422 pp.

    • Crossref
    • Export Citation
  • Juckes, M., 1989: A shallow water model of the winter stratosphere. J. Atmos. Sci., 46, 29342956, doi:10.1175/1520-0469(1989)046<2934:ASWMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleinböhl, A., and Coauthors, 2009: Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res., 114, E10006, doi:10.1029/2009JE003358.

    • Search Google Scholar
    • Export Citation
  • Kuroda, T., A. S. Medvedev, Y. Kasaba, and P. Hartogh, 2013: Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere of Mars. Geophys. Res. Lett., 40, 14841488, doi:10.1002/grl.50326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lait, L., 1994: An alternative form for potential vorticity. J. Atmos. Sci., 51, 17541759, doi:10.1175/1520-0469(1994)051<1754:AAFFPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, S. R., 2003: Modelling the martian atmosphere. Astron. Geophys., 44, 4.064.14, doi:10.1046/j.1468-4004.2003.44406.x.

  • Liu, Y. S., and R. K. Scott, 2015: The onset of the barotropic sudden warming in a global model. Quart. J. Roy. Meteor. Soc., 141, 29442955, doi:10.1002/qj.2580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McConnochie, T. H., 2007: Observations of the Martian atmosphere: THEMIS-VIS calibration, mesospheric clouds, and the polar vortex. Ph.D. dissertation, Cornell University, 239 pp. [Available online at https://ecommons.cornell.edu/handle/1813/3517.]

  • Michelangeli, D. V., R. W. Zurek, and L. S. Elson, 1987: Barotropic instability of midlatitude zonal jets on Mars, Earth and Venus. J. Atmos. Sci., 44, 20312041, doi:10.1175/1520-0469(1987)044<2031:BIOMZJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. Montabone, S. Thomson, and P. L. Read, 2015: Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses. Quart. J. Roy. Meteor. Soc., 141, 550562, doi:10.1002/qj.2376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montabone, L., S. R. Lewis, and P. L. Read, 2011: Mars Analysis Correction Data Assimilation (MACDA): MGS/TES v1.0. NCAS British Atmospheric Data Centre, doi:10.5285/78114093-E2BD-4601-8AE5-3551E62AEF2B.

    • Crossref
    • Export Citation
  • Montabone, L., , and Coauthors, 2014: The Mars Analysis Correction Data Assimilation (MACDA) dataset v1.0. Geosci. Data J., 1, 129139, doi:10.1002/gdj3.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton, W. A., 1994: Breaking Rossby waves in a model stratosphere diagnosed by a vortex-following coordinate system and a technique for advecting material contours. J. Atmos. Sci., 51, 654673, doi:10.1175/1520-0469(1994)051<0654:BRWIAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayleigh, J. W. S., 1880: On the stability, or instability, of certain fluid motions. Proc. London Math. Soc., 11, 5772.

  • Rivier, L., R. Loft, and L. M. Polvani, 2002: An efficient spectral dynamical core for distributed memory computers. Mon. Wea. Rev., 130, 13841390, doi:10.1175/1520-0493(2002)130<1384:AESDCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rong, P. P., and D. W. Waugh, 2004: Vacillations in a shallow-water model of the stratosphere. J. Atmos. Sci., 61, 11741185, doi:10.1175/1520-0469(2004)061<1174:VIASMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., J. P. Kossin, W. H. Schubert, and P. J. Mulero, 2009: Internal control of hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66, 133147, doi:10.1175/2008JAS2717.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. K., 2016: A new class of vacillations of the stratospheric polar vortex. Quart. J. Roy. Meteor. Soc., 142, 19481957, doi:10.1002/qj.2788.

  • Scott, R. K., L. Rivier, R. Loft, and L. M. Polvani, 2004: BOB: Model implementation and user’s guide. NCAR Tech. Note NCAR/TN-456+IA, 30 pp., doi:10.5065/D698850K.

    • Crossref
    • Export Citation
  • Seviour, W. J. M., D. W. Waugh, and R. K. Scott, 2017: Data and software associated with Seviour et al. 2017, the stability of Mars’ annular polar vortex, V1. Johns Hopkins University Data Archive Dataverse, doi:10.7281/T1/VWR4GR.

    • Crossref
    • Export Citation
  • Smith, M. D., 2008: Spacecraft observations of the Martian atmosphere. Annu. Rev. Earth Planet. Sci., 36, 191219, doi:10.1146/annurev.earth.36.031207.124334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toigo, A. D., D. W. Waugh, and S. D. Guzewich, 2017: What causes Mars’ annular polar vortices? Geophys. Res. Lett., 44, 7178, doi:10.1002/2016GL071857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and D. G. Dritschel, 1991: The stability of filamentary vorticity in two-dimensional geophysical vortex-dynamics models. J. Fluid Mech., 231, 575598, doi:10.1017/S002211209100352X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., A. D. Toigo, S. D. Guzewich, S. J. Greybush, R. J. Wilson, and L. Montabone, 2016: Martian polar vortices: Comparison of reanalyses. J. Geophys. Res. Planets, 121, doi:10.1002/2016JE005093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R. J., 1997: A general circulation model simulation of the Martian polar warming. Geophys. Res. Lett., 24, 123126, doi:10.1029/96GL03814.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 547 237 17
PDF Downloads 337 81 6