Broad-Spectrum Mountain Waves

Ronald B. Smith Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Ronald B. Smith in
Current site
Google Scholar
PubMed
Close
and
Christopher G. Kruse Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Christopher G. Kruse in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent airborne mountain-wave measurements over New Zealand in the lower stratosphere during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign allow for improved spectral analysis of velocities u, υ, and w, pressure p, and temperature T fluctuations. Striking characteristics of these data are the spectral breadth and the different spectral shapes of the different physical quantities. Using idealized complex terrain as a guide, the spectra are divided into the long-wave “volume mode” arising from airflow over the whole massif and the short-wave “roughness mode” arising from flow into and out of valleys. The roughness mode is evident in the aircraft data as an intense band of w power from horizontal wavelength λ = 8–40 km. The shorter part of this band (i.e., λ = 8–15 km) falls near the nonhydrostatic buoyancy cutoff (λ = 2πU/N). It penetrates easily into the lower stratosphere but carries little u power or momentum flux. The longer part of this roughness mode (i.e., λ = 15–40 km) carries most of the wave momentum flux. The volume mode for New Zealand, in the range λ = 200–400 km, is detected using the u-power, p-power, and T-power spectra. Typically, the volume mode carries a third or less of the total wave momentum flux, but it dominates the u power and thus may control the wave breakdown aloft. Spectra from numerical simulations agree with theory and aircraft data. Problems with the monochromatic assumption for wave observation and momentum flux parameterization are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ronald B. Smith, ronald.smith@yale.edu

Abstract

Recent airborne mountain-wave measurements over New Zealand in the lower stratosphere during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign allow for improved spectral analysis of velocities u, υ, and w, pressure p, and temperature T fluctuations. Striking characteristics of these data are the spectral breadth and the different spectral shapes of the different physical quantities. Using idealized complex terrain as a guide, the spectra are divided into the long-wave “volume mode” arising from airflow over the whole massif and the short-wave “roughness mode” arising from flow into and out of valleys. The roughness mode is evident in the aircraft data as an intense band of w power from horizontal wavelength λ = 8–40 km. The shorter part of this band (i.e., λ = 8–15 km) falls near the nonhydrostatic buoyancy cutoff (λ = 2πU/N). It penetrates easily into the lower stratosphere but carries little u power or momentum flux. The longer part of this roughness mode (i.e., λ = 15–40 km) carries most of the wave momentum flux. The volume mode for New Zealand, in the range λ = 200–400 km, is detected using the u-power, p-power, and T-power spectra. Typically, the volume mode carries a third or less of the total wave momentum flux, but it dominates the u power and thus may control the wave breakdown aloft. Spectra from numerical simulations agree with theory and aircraft data. Problems with the monochromatic assumption for wave observation and momentum flux parameterization are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ronald B. Smith, ronald.smith@yale.edu
Save
  • Alexander, M. J., 2015: Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb sounding temperatures. Geophys. Res. Lett., 42, 68606867, doi:10.1002/2015GL065234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J., S. D. Eckermann, P. A. Newman, L. Lait, R. Chan, M. Loewenstein, M. H. Proffitt, and B. L. Gary, 1996: Stratospheric horizontal wavenumber of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft. J. Geophys. Res., 101, 94419470, doi:10.1029/95JD03835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannon, P. R., and J. A. Yuhas, 1990: On mountain drag over complex terrain. Meteor. Atmos. Phys., 43, 155162, doi:10.1007/BF01028118.

  • Blumen, W., 1965: Momentum flux by mountain waves in a stratified rotating atmosphere. J. Atmos. Sci., 22, 529534, doi:10.1175/1520-0469(1965)022<0529:MFBMWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1969: Momentum transfer by gravity waves. Quart. J. Roy. Meteor. Soc., 95, 213243, doi:10.1002/qj.49709540402.

  • Cho, Y. N., R. E. Newell, and J. D. Barrick, 1999: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 2. Gravity waves, quasi-two-dimensional turbulence, and vortical modes. J. Geophys. Res., 104, 16 29716 308, doi:10.1029/1999JD900068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Mountain waves. Mesoscale Meteorology and Forecasting, P. Ray, Ed., Amer. Meteor. Soc., 472–492.

    • Crossref
    • Export Citation
  • Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, (3), 123.

  • Ern, M., P. Preusse, M. J. Alexander, and C. D. Warner, 2004: Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res., 109, D20103, doi:10.1029/2004JD004752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and T. E. VanZandt, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part I: Energy dissipation, acceleration, and constraints. J. Atmos. Sci., 50, 36853694, doi:10.1175/1520-0469(1993)050<3685:SEOGWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2016: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bull. Amer. Meteor. Soc., 97, 425453, doi:10.1175/BAMS-D-14-00269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and Coauthors, 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 63836405, doi:10.1175/JCLI-D-12-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gossard, E. E., and W. H. Hooke, 1975: Waves in the Atmosphere. Developments in Atmospheric Science, Vol. 2, Elsevier Scientific Publishing Company, 456 pp.

  • Grubišić, V., and I. Stiperski, 2009: Lee-wave resonances over double bell-shaped obstacles. J. Atmos. Sci., 66, 12051228, doi:10.1175/2008JAS2885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791799, doi:10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasperson, W. H., G. D. Nastrom, and D. C. Fritts, 1990: Further study of terrain effects on the mesoscale spectrum of atmospheric motions. J. Atmos. Sci., 47, 979987, doi:10.1175/1520-0469(1990)047<0979:FSOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korup, O., J. Schmidt, and M. J. McSaveny, 2005: Regional relief characteristics and denudation pattern of the western Southern Alps. Geomorphology, 71, 402423, doi:10.1016/j.geomorph.2005.04.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruse, C., and R. B. Smith, 2015: Gravity wave diagnostics and characteristics in mesoscale fields. J. Atmos. Sci., 72, 43724392, doi:10.1175/JAS-D-15-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruse, C., R. B. Smith, and S. Eckermann, 2016: The midlatitude stratospheric mountain wave “valve layer.” J. Atmos. Sci., 73, 50815100, doi:10.1175/JAS-D-16-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., M. L. Reeder, B. R. Morton, and T. L. Clark, 2000: Observations and numerical modeling of mountain waves over the Southern Alps of New Zealand. Quart. J. Roy. Meteor. Soc., 126, 27652788, doi:10.1002/qj.49712656909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., and P. J. Kennedy, 1973: Observations of a stationary mountain wave and its associated momentum flux and energy dissipation. J. Atmos. Sci., 30, 11351152, doi:10.1175/1520-0469(1973)030<1135:OOASMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, doi:10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1988: Supersaturation of vertically propagating internal gravity waves. J. Atmos. Sci., 45, 705711, doi:10.1175/1520-0469(1988)045<0705:SOVPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, W., and D. C. Fritts, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part III: Gravity wave–tidal interactions. J. Atmos. Sci., 50, 37143727, doi:10.1175/1520-0469(1993)050<3714:SEOGWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, S. Polavarapu, and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802818, doi:10.1175/JAS-D-11-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 2002: An Introduction to Atmospheric Gravity Waves. International Geophysics Series, Vol. 85, Academic Press, 400 pp.

    • Crossref
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 10011039, doi:10.1002/qj.49711247406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Placke, M., P. Hoffmann, M. Gerding, E. Becker, and M. Rapp, 2013: Testing linear gravity wave theory with simultaneous wind and temperature data from the mesosphere. J. Atmos. Sol.-Terr. Phys., 93, 5769, doi:10.1016/j.jastp.2012.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preusse, P., A. Dörnbrack, S. D. Eckermann, M. Riese, B. Schaeler, J. T. Bacmeister, D. Broutman, and K. U. Grossman, 2002: Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study. J. Geophys. Res., 107, 8178, doi:10.1029/2001JD000699.

    • Search Google Scholar
    • Export Citation
  • Queney, P., 1948: The problem of air flow over mountains: A summary of theoretical results. Bull. Amer. Meteor. Soc., 29, 1626.

  • Reinecke, P. A., and D. Durran, 2009: The overamplification of gravity waves in numerical solutions to flow over topography. Mon. Wea. Rev., 137, 15331549, doi:10.1175/2008MWR2630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4146, doi:10.1002/qj.49707532308.

  • Smith, R. B., 1979a: The influence of the earth’s rotation on mountain wave drag. J. Atmos. Sci., 36, 177180, doi:10.1175/1520-0469(1979)036<0177:TIOTER>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979b: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230, doi:10.1016/S0065-2687(08)60262-9.

    • Crossref
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 1–41, doi:10.1016/S0065-2687(08)60052-7.

    • Crossref
    • Export Citation
  • Smith, R. B., B. K. Woods, J. Jensen, W. A. Cooper, J. D. Doyle, Q. Jiang, and V. Grubišić, 2008: Mountain waves entering the stratosphere. J. Atmos. Sci., 65, 25432562, doi:10.1175/2007JAS2598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Coauthors, 2016: Stratospheric gravity wave fluxes and scales during DEEPWAVE. J. Atmos. Sci., 73, 28512869, doi:10.1175/JAS-D-15-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steyn, D. G., and K. W. Ayotte, 1985: Application of two-dimensional terrain height spectra to mesoscale modeling. J. Atmos. Sci., 42, 28842887, doi:10.1175/1520-0469(1985)042<2884:AOTDTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., and A. Hertzog, 2014: The response of superpressure balloons to gravity wave motions. Atmos. Meas. Tech., 7, 10431055, doi:10.5194/amt-7-1043-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. W., 1991: Tectonic geomorphology, uplift rates and geomorphic response in New Zealand. Catena, 18, 439452, doi:10.1016/0341-8162(91)90048-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. J., and J. C. Gille, 2013: Detecting overlapping gravity waves using the S-Transform. Geophys. Res. Lett., 40, 18501855, doi:10.1002/grl.50378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. J., N. P. Hindley, and N. J. Mitchell, 2016: Combining AIRS and MLS observations for three-dimensional gravity wave measurement. Geophys. Res. Lett., 43, 884893, doi:10.1002/2015GL067233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, G. S., and R. A. Pielke, 1983: Application of terrain height variance spectra to mesoscale modeling. J. Atmos. Sci., 40, 25552560, doi:10.1175/1520-0469(1983)040<2555:AOTHVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 617 245 16
PDF Downloads 344 109 5