Tropospheric Waveguide Teleconnections and Their Seasonality

Grant Branstator National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Grant Branstator in
Current site
Google Scholar
PubMed
Close
and
Haiyan Teng National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Haiyan Teng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

One-point correlation maps of the subseasonal variability of 200-hPa meridional wind in nature and an atmospheric general circulation model are systematically analyzed to quantify the impact of the climatological-mean jets on tropospheric covariability as a result of the jets acting as waveguides for the propagation of Rossby waves. As anticipated by linear theory, signatures of jet influence are detected in terms of (i) the geographical position of the strongest teleconnections, (ii) the zonal orientation and extent of prominent patterns of variability, and (iii) the scale of the features that make up those patterns. Further evidence of jet waveguide influence comes from examining the seasonality of these teleconnection attributes. During winter, covariability can be essentially circumglobal, while during summer it tends to be confined within two separate sectors of the globe where the jets are especially strong. Experiments with a multilevel linear planetary wave model confirm that the analyzed characteristics of teleconnections in the waveguides can be attributed to the action of the mean state; no organization to the anomalous forcing of the atmosphere is required to produce these properties. Some attributes, however, depend on the presence of zonal variations in the climatological-mean state that are of similar scale to the teleconnection patterns themselves.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author e-mail: Grant Branstator, branst@ucar.edu

Abstract

One-point correlation maps of the subseasonal variability of 200-hPa meridional wind in nature and an atmospheric general circulation model are systematically analyzed to quantify the impact of the climatological-mean jets on tropospheric covariability as a result of the jets acting as waveguides for the propagation of Rossby waves. As anticipated by linear theory, signatures of jet influence are detected in terms of (i) the geographical position of the strongest teleconnections, (ii) the zonal orientation and extent of prominent patterns of variability, and (iii) the scale of the features that make up those patterns. Further evidence of jet waveguide influence comes from examining the seasonality of these teleconnection attributes. During winter, covariability can be essentially circumglobal, while during summer it tends to be confined within two separate sectors of the globe where the jets are especially strong. Experiments with a multilevel linear planetary wave model confirm that the analyzed characteristics of teleconnections in the waveguides can be attributed to the action of the mean state; no organization to the anomalous forcing of the atmosphere is required to produce these properties. Some attributes, however, depend on the presence of zonal variations in the climatological-mean state that are of similar scale to the teleconnection patterns themselves.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author e-mail: Grant Branstator, branst@ucar.edu
Save
  • Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14, 34953507, doi:10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the Austral winter. J. Atmos. Sci., 52, 36613672, doi:10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40, 16891708, doi:10.1175/1520-0469(1983)040<1689:HEPIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1985: Analysis of general circulation model sea-surface temperature anomaly simulations using a linear model. Part II: Eigenanalysis. J. Atmos. Sci., 42, 22422254, doi:10.1175/1520-0469(1985)042<2242:AOGCMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1990: Low-frequency patterns induced by stationary waves. J. Climate, 47, 629649, doi:10.1175/1520-0469(1990)047<0629:LFPIBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, doi:10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., and J. Frederiksen, 2003: The seasonal cycle of interannual variability and the dynamical imprint of the seasonally varying mean state. J. Atmos. Sci., 60, 15771591, doi:10.1175/3002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2002: A North Pacific short-wave train during the extreme phases of ENSO. J. Climate, 15, 23592376, doi:10.1175/1520-0442(2002)015<2359:ANPSWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation.” Geophys. Res. Lett., 27, 779782, doi:10.1029/1999GL010945.

  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnections in the Northern Hemisphere summer. J. Climate, 18, 34833505, doi:10.1175/JCLI3473.1.

  • Ding, Q., B. Wang, J. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, doi:10.1175/2011JCLI3621.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnik, N., G. Messori, R. Caballero, and S. Feldstein, 2016: The circumglobal North American wave pattern and its relation to cold events in eastern North America. Geophys. Res. Lett., 43, 11 01511 023, doi:10.1002/2016GL070760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1983: Dynamical processes in the atmosphere and the use of models. Quart. J. Roy. Meteor. Soc., 109, 121, doi:10.1002/qj.49710945902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and S.-H. Lin, 1992: Global teleconnections in the 250-mb streamfunction field during the Northern Hemisphere winter. Mon. Wea. Rev., 120, 11691190, doi:10.1175/1520-0493(1992)120<1169:GTITMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, doi:10.2151/jmsj.87.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manola, I., F. Selten, H. de Vries, and W. Hazeleger, 2013: “Waveguidability” of idealized jets. J. Geophys. Res. Atmos., 118, 10 43210 440, doi:10.1002/jgrd.50758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. Sardeshmukh, 1998: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci., 55, 13361353, doi:10.1175/1520-0469(1998)055<1336:TIOTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2013: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather regimes. Proc. Natl. Acad. Sci. USA, 110, 53365341, doi:10.1073/pnas.1222000110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and displacements of the semi-permanent centers of action. J. Mar. Res., 2, 3855, doi:10.1357/002224039806649023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., 1945: On the propagation of frequencies and energy in certain types of oceanic and atmospheric waves. J. Meteor., 2, 187204, doi:10.1175/1520-0469(1945)002<0187:OTPOFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Climate, 24, 47734792, doi:10.1175/JCLI-D-10-05035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of U.S. heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, doi:10.1038/ngeo1988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., 2004: Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Climate, 17, 46744691, doi:10.1175/JCLI-3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, T., 1949: On energy dispersion in the atmosphere. J. Meteor., 6, 116, doi:10.1175/1520-0469(1949)006<0001:OEDITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1097 368 32
PDF Downloads 912 281 20