Understanding the Revival of the Indian Summer Monsoon after Breaks

Dandu Govardhan University Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India

Search for other papers by Dandu Govardhan in
Current site
Google Scholar
PubMed
Close
,
Vadlamudi Brahmananda Rao National Institute for Space Research, São Paulo, Brazil

Search for other papers by Vadlamudi Brahmananda Rao in
Current site
Google Scholar
PubMed
Close
, and
Karumuri Ashok University Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, India

Search for other papers by Karumuri Ashok in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, the authors suggest a dynamical mechanism involved in the revival of the summer monsoon after breaks. In this context, the authors carry out a diagnostic analysis using the datasets from National Centers for Environmental Prediction Reanalysis 2 for the period 1979–2007 to identify a robust mechanism that typifies breaks and subsequent revival of monsoon. The authors find during the peak of significant breaks an anomalous southward shift of the subtropical westerly jet stream, which is invariably accompanied by an anomalous northward shift of a stronger-than-normal easterly jet. These major changes during a break facilitate an instability mechanism, which apparently leads to formation of a synoptic disturbance. Formation of such a disturbance is critical to the subsequent revival of the summer monsoon in 61% of the observed break-to-active revivals.

Computations of energetics and correlation analysis carried out suggest an increase in the eddy kinetic energy at the expense of the mean kinetic energy during the breaks, in agreement with the formation of the synoptic disturbance. This demonstrates that barotropic instability in the presence of a monsoon basic flow is the primary physical mechanism that controls the revival of the summer monsoon subsequent to the break events.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0325.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Karumuri Ashok, ashokkarumuri@uohyd.ac.in

Abstract

In this paper, the authors suggest a dynamical mechanism involved in the revival of the summer monsoon after breaks. In this context, the authors carry out a diagnostic analysis using the datasets from National Centers for Environmental Prediction Reanalysis 2 for the period 1979–2007 to identify a robust mechanism that typifies breaks and subsequent revival of monsoon. The authors find during the peak of significant breaks an anomalous southward shift of the subtropical westerly jet stream, which is invariably accompanied by an anomalous northward shift of a stronger-than-normal easterly jet. These major changes during a break facilitate an instability mechanism, which apparently leads to formation of a synoptic disturbance. Formation of such a disturbance is critical to the subsequent revival of the summer monsoon in 61% of the observed break-to-active revivals.

Computations of energetics and correlation analysis carried out suggest an increase in the eddy kinetic energy at the expense of the mean kinetic energy during the breaks, in agreement with the formation of the synoptic disturbance. This demonstrates that barotropic instability in the presence of a monsoon basic flow is the primary physical mechanism that controls the revival of the summer monsoon subsequent to the break events.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-16-0325.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Karumuri Ashok, ashokkarumuri@uohyd.ac.in

Supplementary Materials

    • Supplemental Materials (DOCX 1.79 MB)
Save
  • Aihara, M., 1959: Stability properties of large-scale baroclinic disturbances in a vertically and horizontally variable zonal current. J. Meteor. Soc. Japan, 37, 4558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, G., R. Keshavamurty, U. De, R. Chellapa, S. Das, and P. Pillai, 1978: Fluctuations of monsoon activity. Indian J. Meteor. Hydrol. Geophys., 29, 7687.

    • Search Google Scholar
    • Export Citation
  • Blanford, H. F., 1886: The Rainfall of India. Meteorological Department, Government of India, 668 pp.

  • Boos, W. R., J. V. Hurley, and V. S. Murthy, 2015: Adiabatic westward drift of Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 141, 10351048, doi:10.1002/qj.2454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., S. Yang, and R. H. Huang, 2005: Relationship between stationary planetary wave activity and the East Asian winter monsoon. J. Geophys. Res., 110, D14110, doi:10.1029/2004JD005669.

    • Search Google Scholar
    • Export Citation
  • Choudhury, A., and R. Krishnan, 2011: Dynamical response of the south Asian monsoon trough to latent heating from stratiform and convective precipitation. J. Atmos. Sci., 68, 13471363, doi:10.1175/2011JAS3705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, P. K., 2002: The Monsoons. National Book Trust of India, 254 pp.

  • Goswami, B. N., 2011: South Asian summer monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2nd ed. W. K.-M. Lau and D. E. Waliser, Eds., Springer, 21–72.

  • Goswami, B. N., and R. S. Ajayamohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198, doi:10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., R. N. Keshavamurthy, and V. Satyan, 1980: Role of barotropic, baroclinic and combined barotropic-baroclinic instability for the growth of monsoon depressions and mid-tropospheric cyclones. Proc. Indian Acad. Sci., Earth Planet. Sci., 89, 7997, doi:10.1007/BF02841521.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., R. S. Ajayamohan, P. K. Xavier, and D. Sengupta, 2003: Clustering of low pressure systems during the Indian summer monsoon by intraseasonal oscillations. Geophys. Res. Lett., 30, 1431, doi:10.1029/2002GL016734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • India Meteorological Department, 2012: Tracks of cyclones and depressions over North Indian Ocean 1891-2015. India Meteorological Department, Regional Meteorological Centre, Chennai. [Available online at http://www.rmcchennaieatlas.tn.nic.in.]

  • Joseph, P. V., and S. Sijikumar, 2004: Intraseasonal variability of the low-level jet stream of the Asian summer monsoon. J. Climate, 17, 14491458, doi:10.1175/1520-0442(2004)017<1449:IVOTLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, S., A. K. Sahai, and B. N. Goswami, 2009: Eastward propagating MJO during boreal summer and Indian monsoon droughts. Climate Dyn., 32, 11391153, doi:10.1007/s00382-008-0412-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2007: Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J. Climate, 20, 320, doi:10.1175/JCLI3981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and R. S. Ajayamohan, 2010: Composite structure of monsoon low pressure systems and its relation to Indian rainfall. J. Climate, 23, 42854305, doi:10.1175/2010JCLI2953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and P. Ardanuy, 1980: The 10 to 20-day westward propagating mode and “breaks in the monsoons.” Tellus, 32, 1526, doi:10.1111/j.2153-3490.1980.tb01717.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 20882095, doi:10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., L. Stefanova, and V. Misra, 2013: Tropical Meteorology: An Introduction. 4th ed. Springer, 423 pp., doi:10.1007/978-1-4614-7409-8.

    • Crossref
    • Export Citation
  • Krishnan, R., C. Zhang, and M. Sugi, 2000: Dynamics of breaks in the Indian summer monsoon. J. Atmos. Sci., 57, 13541372, doi:10.1175/1520-0469(2000)057<1354:DOBITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., V. Kumar, M. Sugi, and J. Yoshimura, 2009: Internal feedbacks from monsoon–midlatitude interactions during droughts in the Indian summer monsoon. J. Atmos. Sci., 66, 553578, doi:10.1175/2008JAS2723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-L., 1949: Dynamic instability of two-dimensional nondivergent flow in barotropic atmosphere. J. Meteor., 6, 105122, doi:10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-L., 1951: Dynamical aspects of the general circulation and the stability of zonal flow. Tellus, 3, 268284, doi:10.1111/j.2153-3490.1951.tb00809.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-L., 1953: On the production of mean zonal currents in the atmosphere by large scale disturbances. Tellus, 5, 475493, doi:10.3402/tellusa.v5i4.8695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, A. K., M. Das Gupta, S. V. Singh, and T. N. Krishnamurti, 2003a: Daily rainfall for the Indian monsoon region from merged satellite and rain gauge values: Large-scale analysis from real-time data. J. Hydrometeor., 4, 769781, doi:10.1175/1525-7541(2003)004<0769:DRFTIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, A. K., M. Das Gupta, R. K. Paliwal, and S. V. Singh, 2003b: Observed daily large-scale rainfall patterns during BOBMEX-1999. Proc. Indian Acad. Sci., Earth Planet. Sci., 112, 223232.

    • Search Google Scholar
    • Export Citation
  • Mitra, A. K., A. K. Bohra, M. N. Rajeevan, and T. N. Krishnamurti, 2009: Daily Indian precipitation analysis formed from a merge of rain-gauge data with the TRMM TMPA satellite-derived rainfall estimates. J. Meteor. Soc. Japan, 87A, 265279, doi:10.2151/jmsj.87A.265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, A. K., and Coauthors, 2013: Prediction of monsoon using a seamless coupled modelling system. Curr. Sci., 104, 11731182.

  • Pai, D. S., J. Bhate, O. P. Sreejith, and H. R. Hatwar, 2009: Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India. Climate Dyn., 36, 4155, doi:10.1007/s00382-009-0634-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platzman, G. W., 1952: The increase or decrease of mean flow energy in large-scale horizontal flow in the atmosphere. J. Meteor., 9, 347358, doi:10.1175/1520-0469(1952)009<0347:TIODOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raghavan, K., 1973: Tibetan anticyclone and tropical easterly jet. Pure Appl. Geophys., 110, 21302142, doi:10.1007/BF00876576.

  • Rajeevan, M., J. Bhate, J. D. Kale, and B. Lal, 2006: High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Curr. Sci., 91, 296306.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., S. Gadgil, and J. Bhate, 2008: Active and break spells of Indian summer monsoon. National Climate Centre Research Rep. 7/2008, India Meteorological Department, 44 pp.

  • Rajeevan, M., S. Gadgil, and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229248, doi:10.1007/s12040-010-0019-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramamurthy, K., 1969: Monsoon of India: Some aspects of the “break” in the Indian southwest monsoon during July and August. India Meteorological Department Forecasting Manual Part IV, 18.3, 57 pp. [Available online at http://www.imdpune.gov.in/Weather/Forecasting_Mannuals/IMD_IV-18.3.pdf.]

  • Raman, C. R. V., and Y. P. Rao, 1981: Blocking highs over Asia and monsoon droughts over India. Nature, 289, 271273, doi:10.1038/289271a0.

  • Ramaswamy, C., 1956: The Indian southwest monsoon. Seminar in the International Meteorological Institute, Stockholm, Sweden.

  • Ramaswamy, C., 1962: Breaks in the Indian summer monsoon as a phenomenon of interaction between the easterly and the subtropical westerly jet streams. Tellus, 14, 337349, doi:10.3402/tellusa.v14i3.9560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, V. B., 1971: Dynamic instability of the zonal current during a break monsoon. Tellus, 23, 111112, doi:10.1111/j.2153-3490.1971.tb00552.x.

    • Search Google Scholar
    • Export Citation
  • Rao, Y. P., 1976: Southwest Monsoon. Meteor. Monogr., No. 1/1976, India Meteorological Department, 366 pp.

  • Satyan, V., R. N. Keshavamurthy, B. N. Goswami, S. K. Dash, and H. S. S. Sinha, 1980: Monsoon cyclogenesis and large-scale flow patterns over South Asia. Proc. Indian Acad. Sci., Earth Planet. Sci., 89A, 277292.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1977: Barotropic-baroclinic instability of mean zonal wind during summer monsoon. Pure Appl. Geophys., 115, 14491461, doi:10.1007/BF00874418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1978: CISK-barotropic-baroclinic instability and the growth of monsoon depressions. J. Atmos. Sci., 35, 495508, doi:10.1175/1520-0469(1978)035<0495:CBBIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and C. M. Dixit, 1972: A study of satellite observed cloudiness over the equatorial Indian Ocean and India during the Southwest monsoon season. J. Mar. Biol. Assoc. India, 14, 805818.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitude during the southwest monsoon. Mon. Wea. Rev., 108, 18401853, doi:10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and R. Narsimha, 1995: Genesis of the monsoon trough boundary layer experiment (MONTBLEX). Proc. Indian Acad. Sci., Earth Planet. Sci., 104, 157187, doi:10.1007/BF02839270.

    • Search Google Scholar
    • Export Citation
  • Starr, V. P., and R. M. White, 1954: Balance requirement of the general circulation. Geophysical Research Papers, Vol. 35, Geophysical Research Directorate, Air Force Cambridge Research Center, 57 pp.

  • Syōno, S., and M. Aihara, 1957: Some characteristic features of barotropic disturbances (II). J. Meteor. Soc. Japan, 35, 5664.

  • Waliser, D. E., 2006: Intraseasonal variability. The Asian Monsoon, B. Wang, Ed., Springer, 203–258.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 531 170 9
PDF Downloads 544 109 4