Broadening of Cloud Droplet Spectra through Eddy Hopping: Turbulent Adiabatic Parcel Simulations

Wojciech W. Grabowski National Center for Atmospheric Research, Boulder, Colorado, and Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Search for other papers by Wojciech W. Grabowski in
Current site
Google Scholar
PubMed
Close
and
Gustavo C. Abade Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Search for other papers by Gustavo C. Abade in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper investigates spectral broadening of droplet size distributions through a mechanism referred to as the eddy hopping. The key idea, suggested a quarter century ago, is that droplets arriving at a given location within a turbulent cloud follow different trajectories and thus experience different growth histories and that this leads to a significant spectral broadening. In this study, the adiabatic parcel model with superdroplets is used to contrast droplet growth with and without turbulence. Turbulence inside the parcel is described by two parameters: (i) the dissipation rate of the turbulent kinetic energy ε and (ii) the linear extent of the parcel L. As expected, an adiabatic parcel without turbulence produces extremely narrow droplet spectra. In the turbulent parcel, a stochastic scheme is used to account for vertical velocity fluctuations that lead to local supersaturation fluctuations for each superdroplet. These fluctuations mimic the impact of droplets hopping turbulent eddies in a natural cloud. For L smaller than a few meters, noticeable spectral broadening is possible only for strong turbulence—say, ε > 100 cm2 s−3. For L typical for grid lengths of large-eddy simulation (LES) models (say, L between 10 and 100 m), the impact is significant even with relatively modest turbulence intensities. The impact increases with both L and ε. The representation of eddy hopping developed in this paper can be included in a straightforward way in the subgrid-scale scheme of a Lagrangian LES cloud model and may lead to a significant acceleration of simulated rain development through collision–coalescence.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Wojciech W. Grabowski, grabow@ucar.edu

Abstract

This paper investigates spectral broadening of droplet size distributions through a mechanism referred to as the eddy hopping. The key idea, suggested a quarter century ago, is that droplets arriving at a given location within a turbulent cloud follow different trajectories and thus experience different growth histories and that this leads to a significant spectral broadening. In this study, the adiabatic parcel model with superdroplets is used to contrast droplet growth with and without turbulence. Turbulence inside the parcel is described by two parameters: (i) the dissipation rate of the turbulent kinetic energy ε and (ii) the linear extent of the parcel L. As expected, an adiabatic parcel without turbulence produces extremely narrow droplet spectra. In the turbulent parcel, a stochastic scheme is used to account for vertical velocity fluctuations that lead to local supersaturation fluctuations for each superdroplet. These fluctuations mimic the impact of droplets hopping turbulent eddies in a natural cloud. For L smaller than a few meters, noticeable spectral broadening is possible only for strong turbulence—say, ε > 100 cm2 s−3. For L typical for grid lengths of large-eddy simulation (LES) models (say, L between 10 and 100 m), the impact is significant even with relatively modest turbulence intensities. The impact increases with both L and ε. The representation of eddy hopping developed in this paper can be included in a straightforward way in the subgrid-scale scheme of a Lagrangian LES cloud model and may lead to a significant acceleration of simulated rain development through collision–coalescence.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Wojciech W. Grabowski, grabow@ucar.edu
Save
  • Andrejczuk, M., W. W. Grabowski, J. Reisner, and A. Gadian, 2010: Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian cloud model. J. Geophys. Res., 115, D22214, doi:10.1029/2010JD014248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arabas, S., A. Jaruga, H. Pawlowska, and W. W. Grabowski, 2015: libcloudph++ 1.0: A single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++. Geosci. Model Dev., 8, 16771707, doi:10.5194/gmd-8-1677-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barahona, D., R. E. L. West, P. Stier, S. Romakkaniemi, H. Kokkola, and A. Nenes, 2010: Comprehensively accounting for the effect of giant CCN in cloud activation parameterizations. Atmos. Chem. Phys., 10, 24672473, doi:10.5194/acp-10-2467-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and L. Chaumat, 2001: Droplet spectra broadening in cumulus clouds. Part I: Broadening in adiabatic cores. J. Atmos. Sci., 58, 628641, doi:10.1175/1520-0469(2001)058<0628:DSBICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1974: On modelling nucleation and condensation theory in Eulerian spatial domain. J. Atmos. Sci., 31, 20992117, doi:10.1175/1520-0469(1974)031<2099:OMNACT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 13011311, doi:10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., S. G. Lasher-Trapp, and A. M. Blyth, 2013: The influence of entrainment and mixing on the initial formation of rain in a warm cumulus cloud. J. Atmos. Sci., 70, 17271743, doi:10.1175/JAS-D-12-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2009: Diffusional and accretional growth of water drops in a rising adiabatic parcel: Effects of the turbulent collision kernel. Atmos. Chem. Phys., 9, 23352353, doi:10.5194/acp-9-2335-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, doi:10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., M. Andrejczuk, and L.-P. Wang, 2011: Droplet growth in a bin warm-rain scheme with Twomey CCN activation. Atmos. Res., 99, 290301, doi:10.1016/j.atmosres.2010.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J., P. Austin, M. Baker, and A. Blyth, 1985: Turbulent mixing, spectral evolution and dynamics in a warm cumulus cloud. J. Atmos. Sci., 42, 173192, doi:10.1175/1520-0469(1985)042<0173:TMSEAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonas, P., 1996: Turbulence and cloud microphysics. Atmos. Res., 40, 283306, doi:10.1016/0169-8095(95)00035-6.

  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 11601189, doi:10.1175/1520-0469(1991)048<1160:TSOACC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanotte, A. S., A. Seminara, and F. Toschi, 2009: Cloud droplet growth by condensation in homogeneous isotropic turbulence. J. Atmos. Sci., 66, 16851697, doi:10.1175/2008JAS2864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131, 195220, doi:10.1256/qj.03.199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemons, D. S., 2002: An Introduction to Stochastic Processes in Physics. Johns Hopkins University Press, 128 pp.

  • Paoli, R., and K. Shariff, 2009: Turbulent condensation of droplets: Direct simulation and a stochastic model. J. Atmos. Sci., 66, 723740, doi:10.1175/2008JAS2734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., W. W. Grabowski, and J.-L. Brenguier, 2006: Observations of the width of cloud droplet spectra in stratocumulus. Geophys. Res. Lett., 33, L19810, doi:10.1029/2006GL026841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664, doi:10.1175/1520-0469(1988)045<1651:VOTSIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 1994: Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech., 26, 2363, doi:10.1146/annurev.fl.26.010194.000323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., and Coauthors, 2012: Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley. J. Geophys. Res., 117, D20205, doi:10.1029/2011JD016837.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol. 18, Springer, 954 pp.

  • Riechelmann, T., Y. Noh, and S. Raasch, 2012: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys., 14, 065008, doi:10.1088/1367-2630/14/6/065008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1991: Subgrid length-scales for large-eddy simulation of stratified turbulence. Theor. Comput. Fluid Dyn., 2, 279290, doi:10.1007/BF00271468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, doi:10.1002/qj.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sidin, R. S. R., R. H. A. IJzermans, and M. W. Reeks, 2009: A Lagrangian approach to droplet condensation in atmospheric clouds. Phys. Fluids, 21, 106603, doi:10.1063/1.3244646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, P., 1952: The growth of cloud drops by condensation. I. General characteristics. Aust. J. Sci. Res., 5A, 6686.

  • Srivastava, R. C., 1989: Growth of cloud drops by condensation: A criticism of currently accepted theory and a new approach. J. Atmos. Sci., 46, 869887, doi:10.1175/1520-0469(1989)046<0869:GOCDBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, C.-W., S. K. Krueger, P. A. McMurtry, and P. H. Austin, 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48, 4158, doi:10.1016/S0169-8095(98)00039-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl. Geophys., 43, 243249, doi:10.1007/BF01993560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., M. K. Yau, P. Bartello, and W. W. Grabowski, 2002: Microscopic approach to cloud droplet growth by condensation. Part II: Turbulence, clustering, and condensational growth. J. Atmos. Sci., 59, 34213435, doi:10.1175/1520-0469(2002)059<3421:MATCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J., 1969a: The microstructure of cumulus cloud. Part I: General features of the droplet spectrum. J. Atmos. Sci., 26, 10491059, doi:10.1175/1520-0469(1969)026<1049:TMOCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J., 1969b: The microstructure of cumulus cloud. Part II: The effect on droplet size distribution of the cloud nucleus spectrum and updraft velocity. J. Atmos. Sci., 26, 12721282, doi:10.1175/1520-0469(1969)026<1272:TMOCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J., 1970: The microstructure of cumulus cloud. Part III: The nature of the updraft. J. Atmos. Sci., 27, 682688, doi:10.1175/1520-0469(1970)027<0682:TMOCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J., 1973a: The microstructure of cumulus cloud. Part IV: The effect on the droplet spectrum of mixing between cloud and environment. J. Atmos. Sci., 30, 256261, doi:10.1175/1520-0469(1973)030<0256:TMOCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J., 1973b: The microstructure of cumulus cloud. Part V: Changes in droplet size distribution with cloud age. J. Atmos. Sci., 30, 17241726, doi:10.1175/1520-0469(1973)030<1724:TMOCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 557 190 8
PDF Downloads 457 160 8