Assessment of the ERA-Interim Winds Using High-Altitude Stratospheric Balloons

Fabrice Duruisseau Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Centre National de la Recherche Scientifique, and Université d’Orléans, Orléans, France

Search for other papers by Fabrice Duruisseau in
Current site
Google Scholar
PubMed
Close
,
Nathalie Huret Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Centre National de la Recherche Scientifique, and Université d’Orléans, Orléans, France

Search for other papers by Nathalie Huret in
Current site
Google Scholar
PubMed
Close
,
Alice Andral Centre National d’Études Spatiales, Toulouse, France

Search for other papers by Alice Andral in
Current site
Google Scholar
PubMed
Close
, and
Claude Camy-Peyret L’Institut Pierre-Simon Laplace, UPMC/UVSQ, Paris, France

Search for other papers by Claude Camy-Peyret in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study focuses on the ability of ERA-Interim to represent wind variability in the middle atmosphere. The originality of the proposed approach is that wind measurements are deduced from the trajectories of zero-pressure balloons that can reach high-stratospheric altitudes. These balloons are mainly used to carry large scientific payloads. The trajectories of balloons launched above Esrange, Sweden, and Teresina, Brazil, from 2000 to 2011 were used to deduce zonal and meridional wind components (by considering the balloon as a perfect tracer at high altitude). Collected data cover several dynamical conditions associated with the winter and summer polar seasons and west and east phases of the quasi-biennial oscillation at the equator. Systematic comparisons between measurements and ERA-Interim data were performed for the two horizontal wind components, as well as wind speed and wind direction in the [100, 2]-hPa pressure range to deduce biases between the model and balloon measurements as a function of altitude.

Results show that whatever the location and the geophysical conditions considered, biases between ERA-Interim and balloon wind measurements increase as a function of altitude. The standard deviation of the model–observation wind differences can attain more than 5 m s−1 at high altitude (pressure P < 20 hPa). A systematic ERA-Interim underestimation of the wind speed is observed and large biases are highlighted, especially for equatorial flights.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fabrice Duruisseau, fabrice.duruisseau@meteo.fr

Abstract

This study focuses on the ability of ERA-Interim to represent wind variability in the middle atmosphere. The originality of the proposed approach is that wind measurements are deduced from the trajectories of zero-pressure balloons that can reach high-stratospheric altitudes. These balloons are mainly used to carry large scientific payloads. The trajectories of balloons launched above Esrange, Sweden, and Teresina, Brazil, from 2000 to 2011 were used to deduce zonal and meridional wind components (by considering the balloon as a perfect tracer at high altitude). Collected data cover several dynamical conditions associated with the winter and summer polar seasons and west and east phases of the quasi-biennial oscillation at the equator. Systematic comparisons between measurements and ERA-Interim data were performed for the two horizontal wind components, as well as wind speed and wind direction in the [100, 2]-hPa pressure range to deduce biases between the model and balloon measurements as a function of altitude.

Results show that whatever the location and the geophysical conditions considered, biases between ERA-Interim and balloon wind measurements increase as a function of altitude. The standard deviation of the model–observation wind differences can attain more than 5 m s−1 at high altitude (pressure P < 20 hPa). A systematic ERA-Interim underestimation of the wind speed is observed and large biases are highlighted, especially for equatorial flights.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fabrice Duruisseau, fabrice.duruisseau@meteo.fr
Save
  • Alexander, P., J. Cornejo, and A. De la Torre, 1996: The response of an open stratospheric balloon to the presence of inertio–gravity waves. J. Appl. Meteor., 35, 6068, doi:10.1175/1520-0450(1996)035<0060:TROAOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and L. J. Gray, 2005: Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data. Geophys. Res. Lett., 32, L09806, doi:10.1029/2004GL022328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, doi:10.1029/1999RG000073.

  • Baron, P., and Coauthors, 2013: Observation of horizontal winds in the middle-atmosphere between 30°S and 55°N during the northern winter 2009–2010. Atmos. Chem. Phys., 12, 32 47332 513, doi:10.5194/acpd-12-32473-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanc, E., T. Farges, A. Le Pichon, and P. Heinrich, 2014: Ten year observations of gravity waves from thunderstorms in western Africa. J. Geophys. Res. Atmos., 119, 64096418, doi:10.1002/2013JD020499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccara, G., A. Hertzog, C. Basdevant, and F. Vial, 2008: Accuracy of NCEP/NCAR reanalyses and ECMWF analyses in the lower stratosphere over Antarctica in 2005. J. Geophys. Res., 113, D20115, doi:10.1029/2008JD010116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borde, R., M. Doutriaux-Boucher, G. Dew, and M. Carranza, 2014: A direct link between feature tracking and height assignment of operational EUMETSAT atmospheric motion vectors. J. Atmos. Oceanic Technol., 31, 3346, doi:10.1175/JTECH-D-13-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borde, R., O. Hautecoeur, and M. Carranza, 2016: EUMETSAT global AVHRR wind product. J. Atmos. Oceanic Technol., 33, 429438, doi:10.1175/JTECH-D-15-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brogniez, C., and Coauthors, 2003: Polar stratospheric cloud microphysical properties measured by the microRADIBAL instrument on 25 January 2000 above Esrange and modeling interpretation. J. Geophys. Res., 108, 8332, doi:10.1029/2001JD001017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chanin, M.-L., A. Garnier, A. Hauchecorne, and J. Porteneuve, 1989: A Doppler lidar for measuring winds in the middle atmosphere. Geophys. Res. Lett., 16, 12731276, doi:10.1029/GL016i011p01273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., A. O’Neill, D. B. Stephenson, W. A. Lahoz, and M. P. Baldwin, 2003: Can knowledge of the state of the stratosphere be used to improve statistical forecasts of the troposphere? Quart. J. Roy. Meteor. Soc., 129, 32053224, doi:10.1256/qj.02.232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charron, M., and Coauthors, 2012: The stratospheric extension of the Canadian global deterministic medium-range weather forecasting system and its impact on tropospheric forecasts. Mon. Wea. Rev., 140, 19241944, doi:10.1175/MWR-D-11-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chipperfield, M. P., 2006: New version of the TOMCAT/SLIMCAT off-line chemical transport model. Quart. J. Roy. Meteor. Soc., 132, 11791203, doi:10.1256/qj.05.51.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, T., B. M. Knudsen, J. P. Pommereau, G. Letrenne, A. Hertzog, F. Vial, J. Ovarlez, and M. Piot, 2007: Evaluation of ECMWF ERA-40 temperature and wind in the lower tropical stratosphere since 1988 from past long-duration balloon measurements. Atmos. Chem. Phys., 7, 33993409, doi:10.5194/acp-7-3399-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and S. M. Uppala, 2008: Variational bias correction in ERA-Interim. ECMWF Tech. Memo. 575, 28 pp.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., T. Birner, A. Fix, H. Flentje, A. Meister, H. Schmid, E. V. Browell, and M. J. Mahoney, 2002: Evidence for inertia gravity waves forming polar stratospheric clouds over Scandinavia. J. Geophys. Res., 107, 8287, doi:10.1029/2001JD000452.

    • Search Google Scholar
    • Export Citation
  • Durry, G., and A. Hauchecorne, 2005: Evidence for long-lived polar vortex air in the mid-latitude summer stratosphere from in situ laser diode CH4 and H2O measurements. Atmos. Chem. Phys., 5, 14671472, doi:10.5194/acp-5-1467-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, J. C. Gille, C. L. Hepplewhite, M. G. Mlynczak, J. M. Russell III, and M. Riese, 2011: Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. J. Geophys. Res., 116, D19107, doi:10.1029/2011JD015821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., and Coauthors, 2016: Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratosphere warmings. Atmos. Chem. Phys., 16, 998310 019, doi:10.5194/acp-16-9983-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and Coauthors, 2010: Stratosphere troposphere coupling and annular mode variability in chemistry-climate models. J. Geophys. Res., 115, D00M06, doi:10.1029/2009JD013770.

    • Search Google Scholar
    • Export Citation
  • Hauchecorne, A., and M.-L. Chanin, 1980: Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys. Res. Lett., 7, 565568, doi:10.1029/GL007i008p00565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., C. Basdevant, F. Vial, and C. R. Mechoso, 2004: The accuracy of stratospheric analyses in the northern hemisphere inferred from long-duration balloon flights. Quart. J. Roy. Meteor. Soc., 130, 607626, doi:10.1256/qj.03.76.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., C. Basdevant, and F. Vial, 2006: An assessment of ECMWF and NCEP–NCAR Reanalyses in the Southern Hemisphere at the end of the presatellite era: Results from the EOLE experiment (1971–72). Mon. Wea. Rev., 134, 33673383, doi:10.1175/MWR3256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilton, F., and Coauthors, 2012: Hyperspectral Earth observation from IASI: Five years of accomplishments. Bull. Amer. Meteor. Soc., 93, 347370, doi:10.1175/BAMS-D-11-00027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., T. G. Shepherd, and G. L. Manney, 2013: Statistical characterization of Arctic polar-night jet oscillation events. J. Climate, 26, 20962116, doi:10.1175/JCLI-D-12-00202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houchi, K., A. Stoffelen, G. J. Marseille, and J. De Kloe, 2010: Comparison of wind and wind shear climatologies derived from high-resolution radiosondes and the ECMWF model. J. Geophys. Res., 115, D22123, doi:10.1029/2009JD013196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., Z.-Z. Hu, J. L. Kinter III, Z. Wu, and A. Kumar, 2012: Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: Methodology and composite life cycle. Climate Dyn., 38, 123, doi:10.1007/s00382-011-1250-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huret, N., M. Pirre, A. Hauchecorne, C. Robert, and V. Catoire, 2006: On the vertical structure of the stratosphere at midlatitudes during the first stage of the polar vortex formation and in the polar region in the presence of a large mesospheric descent. J. Geophys. Res., 111, D06111, doi:10.1029/2005JD006102.

    • Search Google Scholar
    • Export Citation
  • Huret, N., F. Duruisseau, and A. Andral, 2015: On the accuracy of stratospheric meteorological reanalyses using wind measurements at high altitude in the stratosphere. Proceedings of the 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research, L. Ouwehand, Ed., ESA Publ. SP-730, 273278.

  • Jakobson, E., T. Vihma, T. Palo, L. Jakobson, H. Keernik, and J. Jaagus, 2012: Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys. Res. Lett., 39, L10802, doi:10.1029/2012GL051591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., and T. H. Vonder Haar, 1995: Satellite Meteorology: An Introduction. Academic Press, 466 pp.

    • Crossref
    • Export Citation
  • Knudsen, B. M., J.-P. Pommereau, A. Garnier, M. Nunes-Pinharanda, L. Denis, P. Newman, G. Letrenne, and M. Durand, 2002: Accuracy of analyzed stratospheric temperatures in the winter Arctic vortex from infrared Montgolfier long-duration balloon flights 2. Results. J. Geophys. Res., 107, doi:10.1029/2001JD001329.

    • Search Google Scholar
    • Export Citation
  • Knudsen, B. M., T. Christensen, A. Hertzog, A. Deme, F. Vial, and J.-P. Pommereau, 2006: Accuracy of analyzed temperatures, winds and trajectories in the Southern Hemisphere tropical and midlatitude stratosphere as compared to long-duration balloon flights. Atmos. Chem. Phys., 6, 53915397, doi:10.5194/acp-6-5391-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1959: A vertical cross section through the “polar-night” jet stream. J. Geophys. Res., 64, 18351844, doi:10.1029/JZ064i011p01835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., and K. Kodera, 2001: Variability of the polar night jet in the Northern and Southern Hemispheres. J. Geophys. Res., 106, 20 70320 713, doi:10.1029/2001JD900226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuttippurath, J., and G. Nikulin, 2012: A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010. Atmos. Chem. Phys., 12, 81158129, doi:10.5194/acp-12-8115-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmann, E., and P. Névir, 2012: Uncertainties in relative atmospheric angular momentum computed from zonal winds in reanalysis data. J. Geophys. Res., 117, D09101, doi:10.1029/2011JD016658.

    • Search Google Scholar
    • Export Citation
  • Le Pichon, A., E. Blanc, and D. Drob, 2005: Probing high-altitude winds using infrasound. J. Geophys. Res., 110, D20104, doi:10.1029/2005JD006020.

  • Le Pichon, A., and Coauthors, 2015: Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models. J. Geophys. Res. Atmos., 120, 83188331, doi:10.1002/2015JD023273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martineau, P., and S.-W. Son, 2010: Quality of reanalysis data during stratospheric vortex weakening and intensification events. Geophys. Res. Lett., 37, L22801, doi:10.1029/2010GL045237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moffat-Griffin, T., R. E. Hibbins, M. J. Jarvis, and S. R. Colwell, 2011: Seasonal variations of gravity wave activity in the lower stratosphere over an Antarctic Peninsula station. J. Geophys. Res., 116, D14111, doi:10.1029/2010JD015349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortland, D. A., W. R. Skinner, P. B. Hays, M. D. Burrage, R. S. Lieberman, A. R. Marshall, and D. A. Gell, 1996: Measurements of stratospheric winds by the high resolution Doppler imager. J. Geophys. Res., 101, 10 35110 363, doi:10.1029/95JD02142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Podglajen, A., A. Hertzog, R. Plougonven, and N. Žagar, 2014: Assessment of the accuracy of (re)analyses in the equatorial lower stratosphere. J. Geophys. Res. Atmos., 119, 11 16611 188, doi:10.1002/2014JD021849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polavarapu, S., T. G. Shepherd, Y. Rochon, and S. Ren, 2005: Some challenges of middle atmosphere data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35133527, doi:10.1256/qj.05.87.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, E. D., and Coauthors, 2000: Role of lee waves in the formation of solid polar stratospheric clouds: Case studies from February 1997. J. Geophys. Res., 105, 68456853, doi:10.1029/1999JD900908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rüfenacht, R., N. Kämpfer, and A. Murk, 2012: First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer. Atmos. Meas. Tech., 5, 26472659, doi:10.5194/amt-5-2647-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, S., P. Preusse, M. Ern, and M. Riese, 2009: Gravity waves resolved in ECMWF and measured by SABER. Geophys. Res. Lett., 36, L10805, doi:10.1029/2008GL037054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98102, doi:10.1038/ngeo1698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straume-Lindner, A. G., and Coauthors, 2007: ADM-AEOLUS – ESA’s space-borne wind profiling lidar. Proc. Meteorological Satellite Conf., Amsterdam, Netherlands, EUMETSAT, 8 pp. [Available online at http://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_2042918.html.]

  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, doi:10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vial, F., A. Hertzog, C. R. Mechoso, C. Basdevant, P. Cocquerez, V. Dubourg, and F. Nouel, 2001: A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons: 1. Planetary scales. J. Geophys. Res., 106, 22 72522 743, doi:10.1029/2000JD000241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., and A. Hertzog, 2014: The response of superpressure balloons to gravity wave motions. Atmos. Meas. Tech., 7, 10431055, doi:10.5194/amt-7-1043-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetzel, G., and Coauthors, 2013: Validation of MIPAS-ENVISAT H2O operational data collected between July 2002 and March 2004. Atmos. Chem. Phys., 13, 57915811, doi:10.5194/acp-13-5791-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1995: Manual on codes: International codes. WMO-306, 504 pp. [Available online at http://www.wmo.int/pages/prog/www/WMOCodes.html.]

  • Žagar, N., N. Gustafsson, and E. Källén, 2004: Variational data assimilation in the tropics: The impact of a background-error constraint. Quart. J. Roy. Meteor. Soc., 130, 103125, doi:10.1256/qj.03.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 483 245 11
PDF Downloads 217 50 5