The Role of Ice Microphysics Parametrizations in Determining the Prevalence of Supercooled Liquid Water in High-Resolution Simulations of a Southern Ocean Midlatitude Cyclone

Kalli Furtado Met Office, Exeter, United Kingdom

Search for other papers by Kalli Furtado in
Current site
Google Scholar
PubMed
Close
and
Paul Field Met Office, Exeter, United Kingdom

Search for other papers by Paul Field in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-resolution simulations of a Southern Ocean cyclone are compared to satellite-derived observations of liquid water path, cloud-top properties, and top-of-atmosphere radiative fluxes. The focus is on the cold-air-outflow region, where there are contributions to the hydrological budget from the microphysical growth of ice particles by riming and vapor deposition and transport by turbulent mixing. The sensitivity of the simulation to the parameterization of these processes is tested and the relative importance of ice-nucleation temperature is identified. It is shown that ice-phase microphysics is a key factor determining the phase composition of Southern Ocean clouds and physically reasonable parameterization changes are identified that affect the liquid water content of these clouds. The information gained from the sensitivity tests is applied to global model development, where it is shown that a modification to the riming parameterization improves climate mean-state biases in the Southern Ocean region.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kalli Furtado, kalli.furtado@metoffice.gov.uk

Abstract

High-resolution simulations of a Southern Ocean cyclone are compared to satellite-derived observations of liquid water path, cloud-top properties, and top-of-atmosphere radiative fluxes. The focus is on the cold-air-outflow region, where there are contributions to the hydrological budget from the microphysical growth of ice particles by riming and vapor deposition and transport by turbulent mixing. The sensitivity of the simulation to the parameterization of these processes is tested and the relative importance of ice-nucleation temperature is identified. It is shown that ice-phase microphysics is a key factor determining the phase composition of Southern Ocean clouds and physically reasonable parameterization changes are identified that affect the liquid water content of these clouds. The information gained from the sensitivity tests is applied to global model development, where it is shown that a modification to the riming parameterization improves climate mean-state biases in the Southern Ocean region.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kalli Furtado, kalli.furtado@metoffice.gov.uk
Save
  • Bodas-Salcedo, A., K. D. Williams, P. R. Field, and A. P. Lock, 2012: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: The role of midlatitude cyclone clouds. J. Climate, 25, 74677486, doi:10.1175/JCLI-D-11-00702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, doi:10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. Manners, P. Hyder, and S. Kato, 2016: Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Climate, 29, 42134228, doi:10.1175/JCLI-D-15-0564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., D. L. Hartmann, and M. J. Webb, 2016: Mechanisms of the negative shortwave cloud feedback in middle to high latitudes. J. Climate, 29, 139157, doi:10.1175/JCLI-D-15-0327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, Y.-S., C.-H. Ho, C.-E. Park, T. Storelvmo, and I. Tan, 2014: Influence of cloud phase composition on climate feedbacks. J. Geophys. Res. Atmos., 119, 36873700, doi:10.1002/2013JD020582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, R. J., and Coauthors, 2012: The effective density of small ice particles obtained from in situ aircraft observations of mid-latitude cirrus. Quart. J. Roy. Meteor. Soc., 139, 19231934, doi:10.1002/qj.2058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64, 43464365, doi:10.1175/2007JAS2344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Cotton, K. McBeath, A. P. Lock, S. Webster, and R. P. Allan, 2014a: Improving a convection-permitting model simulation of a cold air outbreak. Quart. J. Roy. Meteor. Soc., 140, 124138, doi:10.1002/qj.2116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. A. Hill, K. Furtado, and A. Korolev, 2014b: Mixed-phase clouds in a turbulent environment. Part 2: Analytic treatment. Quart. J. Roy. Meteor. Soc., 140, 870880, doi:10.1002/qj.2175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.

  • Furtado, K., P. R. Field, A. Baran, and R. Cotton, 2015: The sensitivity of simulated high clouds to ice crystal fall speed, shape and size distribution. Quart. J. Roy. Meteor. Soc., 141, 15461559, doi:10.1002/qj.2457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furtado, K., P. R. Field, I. A. Boutle, C. R. Morcrette, and J. Wilkinson, 2016: A physically based subgrid parametrization for the production and maintenance of mixed-phase clouds in a general circulation model. J. Atmos. Sci., 73, 279291, doi:10.1175/JAS-D-15-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harimaya, T., 1975: The riming properties of snow crystals. J. Meteor. Soc. Japan, 53, 384392.

  • He, J., and B. J. Soden, 2016: The impact of SST biases on projections of anthropogenic climate change: A greater role for atmosphere-only models? Geophys. Res. Lett., 43, 77457750, doi:10.1002/2016GL069803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 2003: Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 60, 936956, doi:10.1175/1520-0469(2003)060<0936:PFTCSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, doi:10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, A. Protat, and J. Delanoe, 2012: A study on the low-altitude clouds over the Southern Ocean using the DARDAR-MASK. J. Geophys. Res., 117, D18204, doi:10.1029/2012JB009424.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, and G. Thompson, 2014: An evaluation of WRF simulations of clouds over the Southern Ocean with A-train observations. Mon. Wea. Rev., 142, 647667, doi:10.1175/MWR-D-13-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., C. N. Franklin, S. T. Siems, M. J. Manton, T. Chubb, A. Lock, S. Alexander, and A. Klekociuk, 2015a: Evaluation of boundary-layer cloud forecasts over the Southern Ocean in a limited-area numerical weather prediction system using in situ, space-borne and ground-based observations. Quart. J. Roy. Meteor. Soc., 141, 22592276, doi:10.1002/qj.2519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., A. Protat, S. T. Siems, and M. J. Manton, 2015b: A-Train observations of maritime midlatitude storm-track cloud systems: Comparing the Southern Ocean against the North Atlantic. J. Climate, 28, 19201939, doi:10.1175/JCLI-D-14-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. M., and Coauthors, 2016: Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Climate Change, 6, 917926, doi:10.1038/nclimate3103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single-layer cloud. Quart. J. Roy. Meteor. Soc., 135, 9791002, doi:10.1002/qj.416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 6686, doi:10.1175/2007JAS2355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 3965, doi:10.1256/qj.01.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., P. W. Stackhouse Jr., S. K. Gupta, A. C. Wilber, P. Sawaengphokhai, and G. R. McGarragh, 2014: The Fast Longwave and Shortwave Flux (FLASHFlux) data product: Single-scanner footprint fluxes. J. Appl. Meteor. Climatol., 53, 10591079, doi:10.1175/JAMC-D-13-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebsock, M., and H. Su, 2014: Application of active spaceborne remote sensing for understanding biases between passive cloud water path retrievals. J. Geophys. Res. Atmos., 119, 89628979, doi:10.1002/2014JD021568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary-layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, doi:10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, N. Manalo-Smith, and D. R. Doelling, 2007: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part II: Validation. J. Atmos. Oceanic Technol., 24, 564584, doi:10.1175/JTECH1983.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor, 2015: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J. Geophys. Res. Atmos., 120, 95399554, doi:10.1002/2015JD023603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., S. A. Ackerman, M. D. King, K. Meyer, W. P. Menzel, R. E. Holz, B. A. Baum, and P. Yang, 2015: MODIS atmosphere L2 cloud product (06_L2). NASA MODIS Adaptive Processing System, Goddard Space Flight Center. [Available online at https://modaps.modaps.eosdis.nasa.gov/services/about/products/c6/MYD06_L2.html.]

  • Sallée, J.-B., E. Shuckburgh, N. Bruneau, A. J. S. Meijers, T. J. Bracegirdle, Z. Wang, and T. Roy, 2013: Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. J. Geophys. Res. Oceans, 118, 18301844, doi:10.1002/jgrc.20135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 1993: Carbon dioxide and climate: The impact of cloud parameterization. J. Climate, 6, 393418, doi:10.1175/1520-0442(1993)006<0393:CDACTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, I., and T. Storelvmo, 2016: Sensitivity study on the influence of cloud microphysical parameters on mixed-phase cloud thermodynamic phase partitioning in CAM5. J. Atmos. Sci., 73, 709728, doi:10.1175/JAS-D-15-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454, doi:10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and Coauthors, 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27, 113126, doi:10.1007/s00382-006-0127-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. Bracegirdle, T. Phillips, G. Marshall, and J. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, doi:10.1175/JCLI-D-12-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., T. Meissner, C. Gentemann, K. A. Hilburn, and J. Scott, 2014: Remote Sensing Systems GCOM-W1 AMSR2 Daily Environmental Suite on 0.25 deg grid, version 7.2. Remote Sensing Systems, accessed 2 February 2015. [Available online at http://data.remss.com/amsr2/bmaps_v07.2/y2014/m12/.]

  • Williams, K. D., and Coauthors, 2013: The Transpose-AMIP II experiment and its application to the understanding of Southern Ocean cloud biases in climate models. J. Climate, 26, 32583274, doi:10.1175/JCLI-D-12-00429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., and D. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 16071636, doi:10.1002/qj.49712555707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, D. P. Jeremy, and C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, doi:10.1002/qj.333.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 771 137 14
PDF Downloads 319 90 7