Mean-Flow Effects of Thermal Tides in the Mesosphere and Lower Thermosphere

Erich Becker Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany

Search for other papers by Erich Becker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study addresses the heat budget of the mesosphere and lower thermosphere with regard to the energy deposition of upward-propagating waves. To this end, the energetics of gravity waves are recapitulated using an anelastic version of the primitive equations. This leads to an expression for the energy deposition of waves that is usually resolved in general circulation models. The energy deposition is shown to be mainly due to the frictional heating and, additionally, due to the negative buoyancy production of wave kinetic energy. The frictional heating includes contributions from horizontal and vertical momentum diffusion, as well as from ion drag. This formalism is applied to analyze results from a mechanistic middle-atmosphere general circulation model that includes energetically consistent parameterizations of diffusion, gravity waves, and ion drag. This paper estimates 1) the wave driving and energy deposition of thermal tides, 2) the model response to the excitation of thermal tides, and 3) the model response to the combined energy deposition by parameterized gravity waves and resolved waves. It is found that thermal tides give rise to a significant energy deposition in the lower thermosphere. The temperature response to thermal tides is positive. It maximizes at polar latitudes in the lower thermosphere as a result of poleward circulation branches that are driven by the predominantly westward Eliassen–Palm flux divergence of the tides. In addition, thermal tides give rise to a downward shift and reduction of the gravity wave drag in the upper mesosphere. Including the energy deposition in the model causes a substantial warming in the upper mesosphere and lower thermosphere.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Erich Becker, becker@iap-kborn.de

Abstract

This study addresses the heat budget of the mesosphere and lower thermosphere with regard to the energy deposition of upward-propagating waves. To this end, the energetics of gravity waves are recapitulated using an anelastic version of the primitive equations. This leads to an expression for the energy deposition of waves that is usually resolved in general circulation models. The energy deposition is shown to be mainly due to the frictional heating and, additionally, due to the negative buoyancy production of wave kinetic energy. The frictional heating includes contributions from horizontal and vertical momentum diffusion, as well as from ion drag. This formalism is applied to analyze results from a mechanistic middle-atmosphere general circulation model that includes energetically consistent parameterizations of diffusion, gravity waves, and ion drag. This paper estimates 1) the wave driving and energy deposition of thermal tides, 2) the model response to the excitation of thermal tides, and 3) the model response to the combined energy deposition by parameterized gravity waves and resolved waves. It is found that thermal tides give rise to a significant energy deposition in the lower thermosphere. The temperature response to thermal tides is positive. It maximizes at polar latitudes in the lower thermosphere as a result of poleward circulation branches that are driven by the predominantly westward Eliassen–Palm flux divergence of the tides. In addition, thermal tides give rise to a downward shift and reduction of the gravity wave drag in the upper mesosphere. Including the energy deposition in the model causes a substantial warming in the upper mesosphere and lower thermosphere.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Erich Becker, becker@iap-kborn.de
Save
  • Achatz, U., R. Klein, and F. Senf, 2010: Gravity waves, scale asymptotics and the pseudo-incompressible equations. J. Fluid Mech., 663, 120147, doi:10.1017/S0022112010003411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akmaev, R. A., 2007: On the energetics of mean-flow interactions with thermally dissipating gravity waves. J. Geophys. Res., 112, D11125, doi:10.1029/2006JD007908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Augier, P., and E. Lindborg, 2013: A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci., 70, 22932308, doi:10.1175/JAS-D-12-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., 2003: Frictional heating in global climate models. Mon. Wea. Rev., 131, 508520, doi:10.1175/1520-0493(2003)131<0508:FHIGCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., 2004: Direct heating rates associated with gravity wave saturation. J. Atmos. Sol.-Terr. Phys., 66, 683696, doi:10.1016/j.jastp.2004.01.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., 2009: Sensitivity of the upper mesosphere to the Lorenz energy cycle of the troposphere. J. Atmos. Sci., 66, 647666, doi:10.1175/2008JAS2735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., 2012: Dynamical control of the middle atmosphere. Space Sci. Rev., 168, 283314, doi:10.1007/s11214-011-9841-5.

  • Becker, E., and U. Burkhardt, 2007: Nonlinear horizontal diffusion for GCMs. Mon. Wea. Rev., 135, 14391454, doi:10.1175/MWR3348.1.

  • Becker, E., and C. McLandress, 2009: Consistent scale interaction of gravity waves in the Doppler spread parameterization. J. Atmos. Sci., 66, 14341449, doi:10.1175/2008JAS2810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., R. Knöpfel, and F.-J. Lübken, 2015: Dynamically induced hemispheric differences in the seasonal cycle of the summer polar mesopause. J. Atmos. Sol.-Terr. Phys., 129, 128141, doi:10.1016/j.jastp.2015.04.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boville, B. A., and C. S. Bretherton, 2003: Heating and kinetic energy dissipation in the NCAR Community Atmosphere Model. J. Climate, 16, 38773887, doi:10.1175/1520-0442(2003)016<3877:HAKEDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brune, S., and E. Becker, 2013: Indications of stratified turbulence in a mechanistic GCM. J. Atmos. Sci., 70, 231247, doi:10.1175/JAS-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., and R. S. Lindzen, 1969: Atmospheric tides. Space Sci. Rev., 10, 3188.

  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, doi:10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., W. E. Ward, S. R. Beagley, C. McLandress, J. C. McConnell, N. A. McFarlane, and T. G. Shepherd, 2002: Extended Canadian middle atmosphere model: Zonal-mean climatology and physical parameterizations. J. Geophys. Res., 107, 4087, doi:10.1029/2001JD000479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, J. M., 2007: Dynamics of the thermosphere. J. Meteor. Soc. Japan, 85B, 193213, doi:10.2151/jmsj.85B.193.

  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gassmann, A., and H.-J. Herzog, 2015: How is local material entropy production represented in a numerical model? Quart. J. Roy. Meteor. Soc., 141, 854869, doi:10.1002/qj.2404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerding, M., M. Kopp, P. Hoffmann, J. Höffner, and F.-J. Lübken, 2013: Diurnal variations of midlatitude NLC parameters observed by daylight-capable lidar and their relation to ambient parameters. Geophys. Res. Lett., 40, 63906394, doi:10.1002/2013GL057955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grieger, N., G. Schmitz, and U. Achatz, 2004: The dependence of the nonmigrating tide in the mesosphere and lower thermosphere on stationary planetary waves. J. Atmos. Sol.-Terr. Phys., 66, 733754, doi:10.1016/j.jastp.2004.01.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol.-Terr. Phys., 59, 371386, doi:10.1016/S1364-6826(96)00079-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, C. O., and C. A. Reddy, 1967: On the propagation of atmospheric gravity waves through regions of wind shear. J. Geophys. Res., 72, 10151034, doi:10.1029/JZ072i003p01015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842, doi:10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-S., and R. S. Lindzen, 1976: Solar semidiurnal tide in the thermosphere. J. Atmos. Sci., 33, 135153, doi:10.1175/1520-0469(1976)033<0135:SSTITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, B., and E. Becker, 2016: How does interhemispheric coupling contribute to cool down the summer polar mesosphere? J. Climate, 29, 88078821, doi:10.1175/JCLI-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lieberman, R. S., D. M. Riggin, and D. E. Siskind, 2013: Stationary waves in the wintertime mesosphere: Evidence for gravity wave filtering by stratospheric planetary waves. J. Geophys. Res. Atmos., 118, 31393149, doi:10.1002/jgrd.50319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, doi:10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1990: Dynamics in Atmospheric Physics. Cambridge University Press, 310 pp.

    • Crossref
    • Export Citation
  • Liu, C. H., and K. C. Yeh, 1969: Effect of ion drag on propagation of acoustic-gravity waves in the atmospheric F region. J. Geophys. Res., 74, 22482255, doi:10.1029/JA074i009p02248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H.-L., 2000: Temperature changes due to gravity wave saturation. J. Geophys. Res., 105, 12 32912 336, doi:10.1029/2000JD900054.

  • Liu, X., J. Xu, H.-L. Liu, and R. Ma, 2008: Nonlinear interactions between gravity waves with different wavelengths and diurnal tide. J. Geophys. Res., 113, D08112, doi:10.1029/2007JD009136.

    • Search Google Scholar
    • Export Citation
  • Liu, X., J. Xu, J. Yue, H.-L. Liu, and W. Yuan, 2014: Large winds and wind shears caused by the nonlinear interactions between gravity waves and tidal backgrounds in the mesosphere and lower thermosphere. J. Geophys. Res. Space Phys., 119, 76987708, doi:10.1002/2014JA020221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1967: The nature and theory of the general circulation of the atmosphere. World Meteorological Organization Rep. 218, 161 pp.

  • Lu, W., and D. C. Fritts, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part III: Gravity wave-tidal interactions. J. Atmos. Sci., 50, 37143727, doi:10.1175/1520-0469(1993)050<3714:SEOGWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lübken, F.-J., 1997: Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. J. Geophys. Res., 102, 13 44113 456, doi:10.1029/97JD00853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., W. E. Ward, V. I. Fomichev, K. Semeniuk, S. R. Beagley, N. A. McFarlane, and T. G. Shepherd, 2006: Large-scale dynamics of the mesosphere and lower thermosphere: An analysis using the extended Canadian Middle Atmosphere Model. J. Geophys. Res., 111, D17111, doi:10.1029/2005JD006776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyahara, S., and D.-H. Wu, 1989: Effects of solar tides on the zonal mean circulation in the lower thermosphere: Solstice condition. J. Atmos. Sol.-Terr. Phys., 51, 635647, doi:10.1016/0021-9169(89)90062-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyahara, S., Y. Yoshida, and Y. Miyoshi, 1993: Dynamic coupling between the lower and upper atmosphere by tides and gravity waves. J. Atmos. Sol.-Terr. Phys., 55, 10391053, doi:10.1016/0021-9169(93)90096-H.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moudden, Y., and J. M. Forbes, 2014: Quasi-two-day wave structure, interannual variability, and tidal interactions during the 2002–2011 decade. J. Geophys. Res. Atmos., 119, 22412260, doi:10.1002/2013JD020563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton, W. A., and J. Thuburn, 1996: The two-day wave in a middle atmosphere GCM. Geophys. Res. Lett., 23, 21132116, doi:10.1029/96GL01956.

  • Norton, W. A., and J. Thuburn, 1999: Sensitivity of mesospheric mean flow, planetary waves, and tides to strength of gravity wave drag. J. Geophys. Res., 104, 30 89730 911, doi:10.1029/1999JD900961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortland, D. A., and M. J. Alexander, 2006: Gravity wave influence on the global structure of the diurnal tide in the mesosphere and lower thermosphere. J. Geophys. Res., 111, A10S10, doi:10.1029/2005JA011467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendlebury, D., 2012: A simulation of the quasi-two-day wave and its effect on variability of summertime mesopause temperatures. J. Atmos. Sol.-Terr. Phys., 80, 138151, doi:10.1016/j.jastp.2012.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1983: Baroclinic instability of the summer mesosphere: A mechanism for the quasi-two-day wave? J. Atmos. Sci., 40, 262270, doi:10.1175/1520-0469(1983)040<0262:BIOTSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, R. R. Garcia, K. Matthes, and C. A. Fischer, 2008: Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3). J. Geophys. Res., 113, D08101, doi:10.1029/2007JD009269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlutow, M., E. Becker, and H. Körnich, 2014: Positive definite and mass conserving tracer transport in spectral GCMs. J. Geophys. Res. Atmos., 119, 11 56211 577, doi:10.1002/2014JD021661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and Coauthors, 2006: The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J. Climate, 19, 39033931, doi:10.1175/JCLI3829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senf, F., and U. Achatz, 2011: On the impact of middle-atmosphere thermal tides on the propagation and dissipation of gravity waves. J. Geophys. Res., 116, D24110, doi:10.1029/2011JD015794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T., and E. Becker, 2011: Comments on a spectral parameterization of drag, eddy diffusion, and wave heating for a three-dimensional flow induced by breaking gravity waves. J. Atmos. Sci., 68, 24652469, doi:10.1175/2011JAS3663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766, doi:10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. K., 2003: The origin of stationary planetary waves in the upper mesosphere. J. Atmos. Sci., 60, 30333041, doi:10.1175/1520-0469(2003)060<3033:TOOSPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. K., 2012: Global dynamics of the MLT. Surv. Geophys., 33, 11771230, doi:10.1007/s10712-012-9196-9.

  • Smith, A. K., R. R. Garcia, D. R. Marsh, and J. H. Richter, 2011: WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. J. Geophys. Res., 116, D20115, doi:10.1029/2011JD016083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, B., X. Chu, H.-L. Liu, C. Yamashita, and J. M. Russel III, 2012: Zonal-mean global teleconnection from 15 to 110 km derived from SABER and WACCM. J. Geophys. Res., 117, D10106, doi:10.1029/2011JD016750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vadas, S. L., 2007: Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J. Geophys. Res., 112, A06305, doi:10.1029/2006JA011845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vadas, S. L., and D. C. Fritts, 2005: Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity. J. Geophys. Res., 110, D15103, doi:10.1029/2004JD005574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vadas, S. L., and H.-L. Liu, 2009: Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves. J. Geophys. Res., 114, A10310, doi:10.1029/2009JA014108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallice, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • van Mieghem, J., 1973: Atmospheric Energetics. Clarendon Press, 306 pp.

  • Yiǧit, E., A. D. Aylward, and A. S. Medvedev, 2008: Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study. J. Geophys. Res., 113, D19106, doi:10.1029/2008JD010135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., J.-H. Yee, W. H. Swartz, and E. R. Talaat, 2010: A spectral parameterization of drag, eddy diffusion, and wave heating for a three-dimensional flow induced by breaking gravity waves. J. Atmos. Sci., 67, 25202536, doi:10.1175/2010JAS3302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., J.-H. Yee, W. H. Swartz, and E. R. Talaat, 2011: Reply. J. Atmos. Sci., 68, 24702477, doi:10.1175/2011JAS3738.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 498 188 16
PDF Downloads 442 146 18