Drag Produced by Waves Trapped at a Density Interface in Nonhydrostatic Flow over an Axisymmetric Hill

Miguel A. C. Teixeira Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Miguel A. C. Teixeira in
Current site
Google Scholar
PubMed
Close
,
Alexandre Paci CNRM, METEO-FRANCE and CNRS (UMR3589), Toulouse, France

Search for other papers by Alexandre Paci in
Current site
Google Scholar
PubMed
Close
, and
Anne Belleudy CNRM, METEO-FRANCE and CNRS (UMR3589), Toulouse, France

Search for other papers by Anne Belleudy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Linear nonhydrostatic theory is used to evaluate the drag produced by 3D trapped lee waves forced by an axisymmetric hill at a density interface. These waves occur at atmospheric temperature inversions, for example, at the top of the boundary layer, and contribute to low-level drag possibly misrepresented as turbulent form drag in large-scale numerical models. Unlike in 2D waves, the drag has contributions from a continuous range of wavenumbers forced by the topography, because the waves can vary their angle of incidence to match the resonance condition. This leads to nonzero drag for Froude numbers (Fr) both <1 and >1 and a drag maximum typically for Fr slightly below 1, with lower magnitude than in hydrostatic conditions owing to wave dispersion. These features are in good agreement with laboratory experiments using two axisymmetric obstacles, particularly for the lower obstacle, if the effects of a rigid lid above the upper layer and friction are taken into account. Quantitative agreement is less satisfactory for the higher obstacle, as flow nonlinearity increases. However, even in that case the model still largely outperforms both 3D hydrostatic and 2D nonhydrostatic theories, emphasizing the importance of both 3D and nonhydrostatic effects. The associated wave signatures are dominated by transverse waves for Fr lower than at the drag maximum, a dispersive “Kelvin ship-wave” pattern near the maximum, and divergent waves for Fr beyond the maximum. The minimum elevation at the density-interface depression existing immediately downstream of the obstacle is significantly correlated with the drag magnitude.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Miguel A. C. Teixeira, m.a.teixeira@reading.ac.uk

Abstract

Linear nonhydrostatic theory is used to evaluate the drag produced by 3D trapped lee waves forced by an axisymmetric hill at a density interface. These waves occur at atmospheric temperature inversions, for example, at the top of the boundary layer, and contribute to low-level drag possibly misrepresented as turbulent form drag in large-scale numerical models. Unlike in 2D waves, the drag has contributions from a continuous range of wavenumbers forced by the topography, because the waves can vary their angle of incidence to match the resonance condition. This leads to nonzero drag for Froude numbers (Fr) both <1 and >1 and a drag maximum typically for Fr slightly below 1, with lower magnitude than in hydrostatic conditions owing to wave dispersion. These features are in good agreement with laboratory experiments using two axisymmetric obstacles, particularly for the lower obstacle, if the effects of a rigid lid above the upper layer and friction are taken into account. Quantitative agreement is less satisfactory for the higher obstacle, as flow nonlinearity increases. However, even in that case the model still largely outperforms both 3D hydrostatic and 2D nonhydrostatic theories, emphasizing the importance of both 3D and nonhydrostatic effects. The associated wave signatures are dominated by transverse waves for Fr lower than at the drag maximum, a dispersive “Kelvin ship-wave” pattern near the maximum, and divergent waves for Fr beyond the maximum. The minimum elevation at the density-interface depression existing immediately downstream of the obstacle is significantly correlated with the drag magnitude.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Miguel A. C. Teixeira, m.a.teixeira@reading.ac.uk
Save
  • Apel, J., J. Holbrook, A. Liu, and J. Tsai, 1985: The Sulu Sea internal soliton experiment. J. Phys. Oceanogr., 15, 16251651, doi:10.1175/1520-0485(1985)015<1625:TSSISE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1995: Topographic Effects in Stratified Flows. Cambridge University Press, 498 pp.

  • Benzaquen, M., A. Darmon, and E. Raphaël, 2014: Wake pattern and wave resistance for anisotropic moving disturbances. Phys. Fluids, 26, 092106, doi:10.1063/1.4896257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordois, L., F. Auclair, A. Paci, Y. Dossmann, T. Gerkema, and C. Nguyen, 2016: Tidal energy redistribution among vertical modes in a fluid with a mid-depth pycnocline. Phys. Fluids, 28, 101701, doi:10.1063/1.4964759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., S. Vagle, L. Armi, and D. M. Farmer, 2003: Stratified flow over topography: Upstream influence and generation of nonlinear internal waves. Proc. Roy. Soc. London, 459A, 14671487, doi:10.1098/rspa.2002.1077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dossmann, Y., A. Paci, F. Auclair, and J. W. Floor, 2011: Simultaneous velocity and density measurements for an energy-based approach to internal waves generated over a ridge. Exp. Fluids, 51, 10131028, doi:10.1007/s00348-011-1121-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dossmann, Y., A. Paci, F. Auclair, M. Lepilliez, and E. Cid, 2014: Topographically induced internal solitary waves in a pycnocline: Ultrasonic probes and stereo-correlation measurements. Phys. Fluids, 26, 056601, doi:10.1063/1.4873202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esler, J. G., O. J. Rump, and E. R. Johnson, 2007: Non-dispersive and weakly-dispersive single-layer flow over an axysymmetric obstacle: The equivalent aerofoil formulation. J. Fluid Mech., 574, 209237, doi:10.1017/S0022112006003910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D., and L. Armi, 1999: The generation and trapping of solitary waves over topography. Science, 283, 188190, doi:10.1126/science.283.5399.188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grue, J., 2015a: Nonlinear dead water resistance at subcritical speed. Phys. Fluids, 27, 082103, doi:10.1063/1.4928411.

  • Grue, J., 2015b: Nonlinear interfacial wave formation in three dimensions. J. Fluid Mech., 767, 735762, doi:10.1017/jfm.2015.42.

  • Hertenstein, R. F., 2009: The influence of inversions on rotors. Mon. Wea. Rev., 137, 433446, doi:10.1175/2008MWR2482.1.

  • Hunt, J. N., 1964: The viscous damping of gravity waves in shallow water. Houille Blanche, 19, 685691, doi:10.1051/lhb/1964038.

  • Jiang, Q., and R. B. Smith, 2000: V-waves, bow shocks, and wakes in supercritical hydrostatic flow. J. Fluid Mech., 406, 2753, doi:10.1017/S0022112099007636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, E. R., and G. G. Vilenski, 2004: Flow patterns and drag in near-critical flow over isolated orography. J. Atmos. Sci., 61, 29092918, doi:10.1175/JAS-3311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, E. R., and G. G. Vilenski, 2005: Two-dimensional leaps in the near-critical flow over isolated orography. Proc. Roy. Soc. London, 461A, 37473763, doi:10.1098/rspa.2005.1530.

    • Search Google Scholar
    • Export Citation
  • Knigge, C., D. Etling, A. Paci, and O. Eiff, 2010: Laboratory experiments on mountain-induced rotors. Quart. J. Roy. Meteor. Soc., 136, 442450, doi:10.1002/qj.564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacaze, L., A. Paci, E. Cid, S. Cazin, O. Eiff, J. G. Esler, and E. R. Johnson, 2013: Wave patterns generated by an axisymmetric obstacle in a two-layer flow. Exp. Fluids, 54, 1618, doi:10.1007/s00348-013-1618-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 674 pp.

    • Crossref
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, doi:10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity-wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisy, F., and M. Rabaud, 2014: Scaling of far-field wake angle of non-axisymmetric pressure disturbance. Phys. Rev., 89E, 063004, doi:10.1103/PhysRevE.89.063004.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 2012: An Introduction to Atmospheric Gravity Waves. 2nd ed. Academic Press, 359 pp.

    • Crossref
    • Export Citation
  • Peng, M. S., and W. T. Thompson, 2003: Aspects of the effect on surface friction on flows over mountains. Quart. J. Meteor. Soc., 129, 25272557, doi:10.1256/qj.02.06.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: Dynamics of the Upper Ocean. Cambridge University Press, 337 pp.

  • Pite, H. D., D. R. Topham, and B. J. van Hardenberg, 1995: Laboratory measurements of the drag force on a family of two-dimensional ice keel models in a two-layer flow. J. Phys. Oceanogr., 25, 30083031, doi:10.1175/1520-0485(1995)025<3008:LMOTDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabaud, M., and F. Moisy, 2013: Ship wakes: Kelvin or Mach angle? Phys. Rev. Lett., 110, 214503, doi:10.1103/PhysRevLett.110.214503.

  • Rabaud, M., and F. Moisy, 2014: Narrow ship wakes and wave drag for planing hulls. Ocean Eng., 90, 3438, doi:10.1016/j.oceaneng.2014.06.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachsperger, J., S. Serafin, and V. Grubisic, 2015: Lee waves on the boundary layer inversion and their dependence on free-atmosphere stability. Front. Earth Sci., 3, 70, doi:10.3389/feart.2015.00070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandu, I., A. Beljaars, P. Bechtold, T. Mauritsen, and G. Balsamo, 2013: Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst., 5, 117133, doi:10.1002/jame.20013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., 1962: Gravity waves in the atmosphere as a three-dimensional problem. Quart. J. Roy. Meteor. Soc., 88, 412425, doi:10.1002/qj.49708837805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, doi:10.1002/qj.49707532308.

  • Scorer, R. S., 1953: Theory of airflow over mountains: II—The flow over a ridge. Quart. J. Roy. Meteor. Soc., 79, 7083, doi:10.1002/qj.49707933906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1954: Theory of airflow over mountains: III—Airstream characteristics. Quart. J. Roy. Meteor. Soc., 80, 417428, doi:10.1002/qj.49708034511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2007: Interacting mountain waves and boundary layers. J. Atmos. Sci., 64, 594607, doi:10.1175/JAS3836.1.

  • Smith, R. B., Q. Jiang, and J. D. Doyle, 2006: A theory of gravity wave absorption by a boundary layer. J. Atmos. Sci., 63, 774781, doi:10.1175/JAS3631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., A. A. M. Holtslag, C. J. Nappo, B. J. H. V. de Wiel, and L. Mahrt, 2008: Exploring the possible role of small-scale terrain drag on stable boundary layers over land. J. Appl. Meteor. Climatol., 47, 25182530, doi:10.1175/2008JAMC1816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2009: Parametrization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.

  • Teixeira, M. A. C., 2014: The physics of orographic gravity wave drag. Front. Phys., 2, 43, doi:10.3389/fphy.2014.00043.

  • Teixeira, M. A. C., 2017: Diagnosing lee wave rotor onset using a linear model including a boundary layer. Atmosphere, 8, 5, doi:10.3390/atmos8010005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and C.-L. Yu, 2014: The gravity wave momentum flux in hydrostatic flow with directional shear over elliptical mountains. Eur. J. Mech., 47B, 1631, doi:10.1016/j.euromechflu.2014.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., J. L. Argaín, and P. M. A. Miranda, 2013: Orographic drag associated with lee waves trapped at an inversion. J. Atmos. Sci., 70, 29302947, doi:10.1175/JAS-D-12-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuck, E. O., 1965: The effect of nonlinearity at the free surface on flow past a submerged cylinder. J. Fluid Mech., 22, 401414, doi:10.1017/S0022112065000836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., 2004: Inversion effects on mountain lee waves. Quart. J. Roy. Meteor. Soc., 130, 17231748, doi:10.1256/qj.03.63.

  • Wurtele, M. G., R. D. Sharman, and A. Datta, 1996: Atmospheric lee waves. Annu. Rev. Fluid Mech., 28, 429476, doi:10.1146/annurev.fl.28.010196.002241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C.-L., and M. A. C. Teixeira, 2015: Impact of non-hydrostatic effects and trapped lee waves on mountain-wave drag in directionally sheared flow. Quart. J. Roy. Meteor. Soc., 141, 15721585, doi:10.1002/qj.2459.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 256 85 8
PDF Downloads 88 28 0