Effects of Vertical Eddy Diffusivity Parameterization on the Evolution of Landfalling Hurricanes

Feimin Zhang College of Atmospheric Sciences, Lanzhou University, Lanzhou, China, and Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Feimin Zhang in
Current site
Google Scholar
PubMed
Close
and
Zhaoxia Pu Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Zhaoxia Pu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As a result of rapid changes in surface conditions when a landfalling hurricane moves from ocean to land, interactions between the hurricane and surface heat and moisture fluxes become essential components of its evolution and dissipation. With a research version of the Hurricane Weather Research and Forecasting Model (HWRF), this study examines the effects of the vertical eddy diffusivity in the boundary layer on the evolution of three landfalling hurricanes (Dennis, Katrina, and Rita in 2005).

Specifically, the parameterization scheme of eddy diffusivity for momentum Km is adjusted with the modification of the mixed-layer velocity scale in HWRF for both stable and unstable conditions. Results show that the change in the Km parameter leads to improved simulations of hurricane track, intensity, and quantitative precipitation against observations during and after landfall, compared to the simulations with the original Km.

Further diagnosis shows that, compared to original Km, the modified Km produces stronger vertical mixing in the hurricane boundary layer over land, which tends to stabilize the hurricane boundary layer. Consequently, the simulated landfalling hurricanes attenuate effectively with the modified Km, while they mostly inherit their characteristics over the ocean and decay inefficiently with the original Km.

Publisher’s Note: This article was revised on 26 May 2017 to correct the spelling of the first author’s name.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Zhaoxia Pu, zhaoxia.pu@utah.edu

Abstract

As a result of rapid changes in surface conditions when a landfalling hurricane moves from ocean to land, interactions between the hurricane and surface heat and moisture fluxes become essential components of its evolution and dissipation. With a research version of the Hurricane Weather Research and Forecasting Model (HWRF), this study examines the effects of the vertical eddy diffusivity in the boundary layer on the evolution of three landfalling hurricanes (Dennis, Katrina, and Rita in 2005).

Specifically, the parameterization scheme of eddy diffusivity for momentum Km is adjusted with the modification of the mixed-layer velocity scale in HWRF for both stable and unstable conditions. Results show that the change in the Km parameter leads to improved simulations of hurricane track, intensity, and quantitative precipitation against observations during and after landfall, compared to the simulations with the original Km.

Further diagnosis shows that, compared to original Km, the modified Km produces stronger vertical mixing in the hurricane boundary layer over land, which tends to stabilize the hurricane boundary layer. Consequently, the simulated landfalling hurricanes attenuate effectively with the modified Km, while they mostly inherit their characteristics over the ocean and decay inefficiently with the original Km.

Publisher’s Note: This article was revised on 26 May 2017 to correct the spelling of the first author’s name.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Zhaoxia Pu, zhaoxia.pu@utah.edu
Save
  • Bao, J. W., S. A. Michelson, and J. M. Wilczak, 2002: Sensitivity of numerical simulations to parameterizations of roughness for surface heat fluxes at high winds over the sea. Mon. Wea. Rev., 130, 19261932, doi:10.1175/1520-0493(2002)130<1926:SONSTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, J., 2005: Tropical cyclone report: Hurricane Dennis, 4–13 July 2005. NOAA/National Hurricane Center Rep., 25 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL042005_Dennis.pdf.]

  • Bluestein, H. B., and D. S. Hazen, 1989: Doppler-radar analysis of a tropical cyclone over land: Hurricane Alicia (1983) in Oklahoma. Mon. Wea. Rev., 117, 25942611, doi:10.1175/1520-0493(1989)117<2594:DRAOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W. K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, doi:10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brettschneider, B., 2008: Climatological hurricane landfall probability for the United States. J. Appl. Meteor. Climatol., 47, 704716, doi:10.1175/2007JAMC1711.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., W. Zhao, M. A. Donelan, J. F. Price, and E. J. Walsh, 2007: The CBLAST-Hurricane Program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311317, doi:10.1175/BAMS-88-3-311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J., E. A. Kalina, J. A. Zhang, and E. W. Uhlhorn, 2013: Observations of air–sea interaction and intensity change in hurricanes. Mon. Wea. Rev., 141, 23682382, doi:10.1175/MWR-D-12-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351856, doi:10.1175/JAS3921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthor, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, doi:10.1175/2007MWR2085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2014: Tropical cyclone prediction using COAMPS-TC. Oceanography, 27 (3), 104115, doi:10.5670/oceanog.2014.72.

  • Elsberry, R. L., 2002: Predicting hurricane landfall precipitation: Optimistic and pessimistic views from the symposium on precipitation extremes. Bull. Amer. Meteor. Soc., 83, 13331339, doi:10.1175/1520-0477(2002)083<1333:PHLPOA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farfán, L. M., and J. A. Zehnder, 2001: An analysis of the landfall of Hurricane Nora (1997). Mon. Wea. Rev., 129, 20732088, doi:10.1175/1520-0493(2001)129<2073:AAOTLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks, J. A. Zhang, X. Zhang, J. W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, doi:10.1175/JAS-D-11-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, D., and Coauthors, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of stage IV toward CPC gauge-based analysis. J. Hydrometeor., 15, 25422557, doi:10.1175/JHM-D-11-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., and Coauthors, 2006: The Hurricane Rainband and Intensity Change Experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87, 15031521, doi:10.1175/BAMS-87-11-1503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., R. Gall, and M. E. Pyle, 2010: Scientific documentation for the NMM solver. NCAR Tech. Note NCAR/TN–477+STR, 53 pp., doi:10.5065/D6MW2F3Z.

    • Crossref
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2001: On the decay of tropical cyclone winds after landfall in the New England area. J. Appl. Meteor., 40, 280286, doi:10.1175/1520-0450(2001)040<0280:OTDOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, doi:10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 14271445, doi:10.1175/MWR-D-11-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., 2006: A modeling study of hurricane landfall in a dry environment. Mon. Wea. Rev., 134, 19011918, doi:10.1175/MWR3155.1.

  • Knabb, R. D., J. R. Rhome, and D. P. Brown, 2005: Tropical cyclone report: Hurricane Katrina, 23–30 August 2005. NOAA/National Hurricane Center Rep., 43 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL122005_Katrina.pdf.]

  • Knabb, R. D., J. R. Rhome, and D. P. Brown, 2006: Tropical cyclone report: Hurricane Rita, 18–26 September 2005. NOAA/National Hurricane Center Rep., 33 pp.

  • Kurihara, Y., and R. E. Tuleya, 1974: Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. J. Atmos. Sci., 31, 893919, doi:10.1175/1520-0469(1974)031<0893:SOATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 48194838, doi:10.1175/2008MWR2366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., N. Surgi, S. Lord, W. S. Wu, S. Parrish, S. Gopalakrishnan, J. Waldrop, and J. Gamache, 2006: Hurricane initialization in HWRF Model. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 8A.2. [Available online at https://ams.confex.com/ams/pdfpapers/108496.pdf.]

  • Marks, F. D., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323, doi:10.1175/1520-0477(1998)079<0305:LTCFPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 2004: Users guide for a three-dimensional, primitive equation, numerical ocean model. Program in Atmospheric and Oceanic Sciences, Princeton University Rep., 56 pp.

  • Miller, B. I., 1964: A study on the filling of Hurricane Donna (1960) over land. Mon. Wea. Rev., 92, 389406, doi:10.1175/1520-0493(1964)092<0389:ASOTFO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1985: Aircraft observations of the Ekman layer during the Joint Air–Sea Interaction Experiment. Quart. J. Roy. Meteor. Soc., 111, 391426, doi:10.1002/qj.49711146807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, doi:10.1023/A:1022146015946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ data and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and outer core boundary layer structure. Mon. Wea. Rev., 137, 36513674, doi:10.1175/2009MWR2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698, doi:10.1175/2009MWR2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parrish, J. R., R. W. Burpee, F. D. Marks, and R. Grebe, 1982: Rainfall patterns observed by digitized radar during the landfall of Hurricane Frederic (1979). Mon. Wea. Rev., 110, 19331944, doi:10.1175/1520-0493(1982)110<1933:RPOBDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1982: The transition of the Hurricane Frederic boundary layer wind fields from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110, 19121932, doi:10.1175/1520-0493(1982)110<1912:TTOTHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1987: Changes in the low-level kinematic and thermodynamic structure of Hurricane Alicia (1983) at landfall. Mon. Wea. Rev., 115, 7599, doi:10.1175/1520-0493(1987)115<0075:CITLLK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938, doi:10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and S. H. Houston, 1996: Hurricane Andrew’s landfall in south Florida. Part II: Surface wind fields and potential real-time applications. Wea. Forecasting, 11, 329349, doi:10.1175/1520-0434(1996)011<0329:HALISF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., X. Li, and J. Sun, 2009: Impact of airborne Doppler radar data assimilation on the numerical simulation of intensity changes of Hurricane Dennis near a landfall. J. Atmos. Sci., 66, 33513365, doi:10.1175/2009JAS3121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenthal, S. L., 1971: The response of a tropical cyclone model to variations in boundary layer parameters, initial conditions, lateral boundary conditions, and domain size. Mon. Wea. Rev., 99, 767777, doi:10.1175/1520-0493(1971)099<0767:TROATC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shelton, K. L., and J. Molinari, 2009: Life of a six-hour hurricane. Mon. Wea. Rev., 137, 5167, doi:10.1175/2008MWR2472.1.

  • Sirutis, J. J., and K. Miyakoda, 1990: Subgrid scale physics in 1-month forecasts. Part I: Experiment with four parameterization packages. Mon. Wea. Rev., 118, 10431064, doi:10.1175/1520-0493(1990)118<1043:SSPIMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, R. K., 2003: A simple model of the hurricane boundary layer. Quart. J. Roy. Meteor. Soc., 129, 10071027, doi:10.1256/qj.01.197.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Vol. 13, Kluwer Academic Publishers, 670 pp., doi:10.1007/978-94-009-3027-8.

    • Crossref
    • Export Citation
  • Tallapragada, V., and Coauthors, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, doi:10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and Coauthors, 2014: Hurricane Weather Research and Forecasting (HWRF) Model: 2014 scientific documentation. Developmental Testbed Center Tech. Rep., 105 pp.

  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, doi:10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1978: A numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci., 35, 242257, doi:10.1175/1520-0469(1978)035<0242:ANSOTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitehead, J. C., 2003: One million dollars per mile? The opportunity costs of hurricane evacuation. Ocean Coastal Manage., 46, 10691083, doi:10.1016/j.ocecoaman.2003.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and propagating convective bands in asymmetric hurricanes. J. Atmos. Sci., 41, 31893211, doi:10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. C., and Y. H. Kuo, 1999: Typhoon affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 6780, doi:10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. C., T. H. Yen, Y. H. Huang, C. K. Yu, and S. G. Chen, 2016: Statistical characteristic of heavy rainfall associated with typhoon near Taiwan based on high-density automatic rain gauge data. Bull. Amer. Meteor. Soc., 97, 13631375, doi:10.1175/BAMS-D-15-00076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and W. M. Drennan, 2012: An observational study of vertical eddy diffusivity in the hurricane boundary layer. J. Atmos. Sci., 69, 32233236, doi:10.1175/JAS-D-11-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., W. M. Drennan, P. G. Black, and J. R. French, 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 24552467, doi:10.1175/2009JAS2954.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., F. D. Marks, M. T. Montgomery, and S. Lorsolo, 2011: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462, doi:10.1175/2010MWR3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., S. Gopalakrishnan, F. Marks, R. F. Rogers, and V. Tallapragada, 2012: A developmental framework for improving hurricane model physical parameterizations using aircraft observations. Trop. Cyclone Res. Rev., 1, 419429, doi:10.6057/2012TCRR04.01.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks, 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, doi:10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, doi:10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., 2008: Impact of land surface roughness on surface winds during hurricane landfall. Quart. J. Roy. Meteor. Soc., 134, 10511057, doi:10.1002/qj.265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., and J. Furst, 2013: On the parameterization of surface momentum transport via drag coefficient in low wind conditions. Geophys. Res. Lett., 40, 28242828, doi:10.1002/grl.50518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., K. Menelaou, and Z. D. Zhu, 2014: Impact of subgrid-scale vertical turbulent mixing on eyewall asymmetric structures and mesovortices of hurricanes. Quart. J. Roy. Meteor. Soc., 140, 416438, doi:10.1002/qj.2147.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 393 108 8
PDF Downloads 315 76 4