Ice Multiplication by Breakup in Ice–Ice Collisions. Part I: Theoretical Formulation

Vaughan T. J. Phillips Department of Physical Geography, University of Lund, Lund, Sweden

Search for other papers by Vaughan T. J. Phillips in
Current site
Google Scholar
PubMed
Close
,
Jun-Ichi Yano CNRM UMR3589, Météo-France, and CNRS, Toulouse, France

Search for other papers by Jun-Ichi Yano in
Current site
Google Scholar
PubMed
Close
, and
Alexander Khain Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel

Search for other papers by Alexander Khain in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For decades, enhancement of ice concentrations above those of active ice nucleus aerosols was observed in deep clouds with tops too warm for homogeneous freezing, indicating fragmentation of ice (multiplication). Several possible mechanisms of fragmentation have been suggested from laboratory studies, and one of these involves fragmentation in ice–ice collisions.

In this two-part paper, the role of breakup in ice–ice collisions in a convective storm consisting of many cloud types is assessed with a modeling approach. The colliding ice particles can belong to any microphysical species, such as crystals, snow, graupel, hail, or freezing drops.

In the present study (Part I), a full physical formulation of initiation of cloud ice by mechanical breakup in collisions involving snow, graupel, and/or hail is developed based on an energy conservation principle. Theoretically uncertain parameters are estimated by simulating laboratory and field experiments already published in the literature. Here, collision kinetic energy (CKE) is the fundamental governing variable of fragmentation in any collision, because it measures the energy available for breakage by work done to create the new surface of fragments.

The developed formulation is general in the sense that it includes all the types of fragmentation observed in previous published studies and encompasses collisions of either snow or crystals with graupel/hail, collisions among only graupel/hail, and collisions among only snow/crystals. It explains the observed dependencies on CKE, size, temperature, and degree of prior riming.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Vaughan T. J. Phillips, vaughan.phillips@nateko.lu.se

Abstract

For decades, enhancement of ice concentrations above those of active ice nucleus aerosols was observed in deep clouds with tops too warm for homogeneous freezing, indicating fragmentation of ice (multiplication). Several possible mechanisms of fragmentation have been suggested from laboratory studies, and one of these involves fragmentation in ice–ice collisions.

In this two-part paper, the role of breakup in ice–ice collisions in a convective storm consisting of many cloud types is assessed with a modeling approach. The colliding ice particles can belong to any microphysical species, such as crystals, snow, graupel, hail, or freezing drops.

In the present study (Part I), a full physical formulation of initiation of cloud ice by mechanical breakup in collisions involving snow, graupel, and/or hail is developed based on an energy conservation principle. Theoretically uncertain parameters are estimated by simulating laboratory and field experiments already published in the literature. Here, collision kinetic energy (CKE) is the fundamental governing variable of fragmentation in any collision, because it measures the energy available for breakage by work done to create the new surface of fragments.

The developed formulation is general in the sense that it includes all the types of fragmentation observed in previous published studies and encompasses collisions of either snow or crystals with graupel/hail, collisions among only graupel/hail, and collisions among only snow/crystals. It explains the observed dependencies on CKE, size, temperature, and degree of prior riming.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Vaughan T. J. Phillips, vaughan.phillips@nateko.lu.se
Save
  • Auer, A. H., D. L. Veal, and J. D. Marwitz, 1969: Observations of ice crystal and ice nuclei concentrations in stable cap clouds. J. Atmos. Sci., 26, 13421343, doi:10.1175/1520-0469(1969)026<1342:OOICAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacon, N. J., B. D. Swanson, M. D. Baker, and E. J. Davis, 1998: Breakup of levitated frost particles. J. Geophys. Res., 103, 13 76313 775, doi:10.1029/98JD01162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, doi:10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, G., 1958: Study of collisions. Part. I. A survey of the periodical literature. Amer. J. Phys., 26, 5, doi:10.1119/1.1934583.

  • Blyth, A. M., and J. Latham, 1993: Development of ice and precipitation in New Mexican summertime cumulus clouds. Quart. J. Roy. Meteor. Soc., 119, 91120, doi:10.1002/qj.49711950905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284294, doi:10.1175/1520-0469(2000)057<0284:AFMFTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantrell, W. S., and A. J. Heymsfield, 2005: Production of ice in tropospheric clouds: A review. Bull. Amer. Meteor. Soc., 86, 795807, doi:10.1175/BAMS-86-6-795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, doi:10.1175/JTECH1922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

  • Harris-Hobbs, R. L., and W. A. Cooper, 1987: Field evidence supporting quantitative predictions of secondary ice production rates. J. Atmos. Sci., 44, 10711082, doi:10.1175/1520-0469(1987)044<1071:FESQPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1969: Ice multiplication in clouds. J. Atmos. Sci., 26, 315318, doi:10.1175/1520-0469(1969)026<0315:IMIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and Coauthors, 1971: Studies of winter cyclonic storms over the Cascade Mountains (1970–71). Research Rep. VI, Dept. of Atmospheric Sciences, University of Washington, 306 pp.

  • Hobbs, P. V., M. K. Politovich, and L. F. Radke, 1980: The structures of summer convective clouds in eastern Montana. I: Natural clouds. J. Appl. Meteor., 19, 645663, doi:10.1175/1520-0450(1980)019<0645:TSOSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C., and N. Knight, 1971: Hailstones. Sci. Amer., 224, 96103, doi:10.1038/scientificamerican0471-96.

  • Knight, C., P. T. Schlatter, and T. W. Schlatter, 2008: An unusual hailstorm on 24 June 2006 in Boulder, Colorado. Part II: Low-density growth of hail. Mon. Wea. Rev., 136, 28332848, doi:10.1175/2008MWR2338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, and M. Wasey, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne icing instrumentation evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Low, T. B., and R. List, 1982: Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 15911606, doi:10.1175/1520-0469(1982)039<1591:CCABOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, I., 1687: Philosophiæ Naturalis Principia Mathematica. Royal Society, 23 pp.

    • Crossref
    • Export Citation
  • Phillips, V. T. J., P. J. Demott, C. Andronache, K. A. Pratt, K. A. Prather, R. Subramanian, and C. Twohy, 2013: Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations. J. Atmos. Sci., 70, 378409, doi:10.1175/JAS-D-12-080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., M. Formenton, A. Bansemer, I. Kudzotsa, and B. Lienert, 2015: A parameterization of sticking efficiency for collisions of snow and graupel with ice crystals: Theory and comparison with observations. J. Atmos. Sci., 72, 48854902, doi:10.1175/JAS-D-14-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polycarpou, A. A., and I. Etsion, 1999: Analytical approximations in modeling contacting rough surfaces. J. Tribol., 121, 234239, doi:10.1115/1.2833926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol. 18, Kluwer Academic Publishers, 954 pp.

  • Schaeffer, V., and R. Cheng, 1971: The production of ice crystal fragments by sublimination and electrification. J. Rech. Atmos., 5, 510.

    • Search Google Scholar
    • Export Citation
  • Supulver, K. D., F. G. Bridges, and D. N. C. Lin, 1995: The coefficient of restitution of ice particles in glancing collisions: Experimental results for unfrosted surfaces. Icarus, 113, 188199, doi:10.1006/icar.1995.1015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., Y. Nagao, and Y. Kushiyama, 1995: Possible high ice particle production during graupel–graupel collisions. J. Atmos. Sci., 52, 45234527, doi:10.1175/1520-0469(1995)052<4523:PHIPPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vardiman, L., 1974: The generation of secondary ice particles in clouds by crystal–crystal collisions. Ph.D. thesis, Colorado State University, 140 pp.

  • Vardiman, L., 1978: The generation of secondary ice particles in clouds by crystal–crystal collision. J. Atmos. Sci., 35, 21682180, doi:10.1175/1520-0469(1978)035<2168:TGOSIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidaurre, G., and J. Hallett, 2009: Particle impact and breakup in aircraft measurement. J. Atmos. Oceanic Technol., 26, 972983, doi:10.1175/2008JTECHA1147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, S., W. John, H. Wang, and S. L. Goren, 1990: Measurements of kinetic energy loss for particles impacting surfaces. Aerosol Sci. Technol., 12, 926946, doi:10.1080/02786829008959404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and V. T. J. Phillips, 2011: Ice–ice collisions: A key ice multiplication process in atmospheric clouds. J. Atmos. Sci., 68, 322333, doi:10.1175/2010JAS3607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., V. T. J. Phillips, and V. Kanawade, 2016: Explosive ice multiplication by mechanical break-up in ice–ice collisions: A dynamical system-based study. Quart. J. Roy. Meteor. Soc., 142, 867879, doi:10.1002/qj.2687.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1003 266 22
PDF Downloads 990 255 19