Toward Quantifying the Climate Heat Engine: Solar Absorption and Terrestrial Emission Temperatures and Material Entropy Production

Peter R. Bannon Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Peter R. Bannon in
Current site
Google Scholar
PubMed
Close
and
Sukyoung Lee Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Sukyoung Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A heat-engine analysis of a climate system requires the determination of the solar absorption temperature and the terrestrial emission temperature. These temperatures are entropically defined as the ratio of the energy exchanged to the entropy produced. The emission temperature, shown here to be greater than or equal to the effective emission temperature, is relatively well known. In contrast, the absorption temperature requires radiative transfer calculations for its determination and is poorly known.

The maximum material (i.e., nonradiative) entropy production of a planet’s steady-state climate system is a function of the absorption and emission temperatures. Because a climate system does no work, the material entropy production measures the system’s activity. The sensitivity of this production to changes in the emission and absorption temperatures is quantified. If Earth’s albedo does not change, material entropy production would increase by about 5% per 1-K increase in absorption temperature. If the absorption temperature does not change, entropy production would decrease by about 4% for a 1% decrease in albedo. It is shown that, as a planet’s emission temperature becomes more uniform, its entropy production tends to increase. Conversely, as a planet’s absorption temperature or albedo becomes more uniform, its entropy production tends to decrease. These findings underscore the need to monitor the absorption temperature and albedo both in nature and in climate models.

The heat-engine analyses for four planets show that the planetary entropy productions are similar for Earth, Mars, and Titan. The production for Venus is close to the maximum production possible for fixed absorption temperature.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Peter R. Bannon, bannon@ems.psu.edu

Abstract

A heat-engine analysis of a climate system requires the determination of the solar absorption temperature and the terrestrial emission temperature. These temperatures are entropically defined as the ratio of the energy exchanged to the entropy produced. The emission temperature, shown here to be greater than or equal to the effective emission temperature, is relatively well known. In contrast, the absorption temperature requires radiative transfer calculations for its determination and is poorly known.

The maximum material (i.e., nonradiative) entropy production of a planet’s steady-state climate system is a function of the absorption and emission temperatures. Because a climate system does no work, the material entropy production measures the system’s activity. The sensitivity of this production to changes in the emission and absorption temperatures is quantified. If Earth’s albedo does not change, material entropy production would increase by about 5% per 1-K increase in absorption temperature. If the absorption temperature does not change, entropy production would decrease by about 4% for a 1% decrease in albedo. It is shown that, as a planet’s emission temperature becomes more uniform, its entropy production tends to increase. Conversely, as a planet’s absorption temperature or albedo becomes more uniform, its entropy production tends to decrease. These findings underscore the need to monitor the absorption temperature and albedo both in nature and in climate models.

The heat-engine analyses for four planets show that the planetary entropy productions are similar for Earth, Mars, and Titan. The production for Venus is close to the maximum production possible for fixed absorption temperature.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Peter R. Bannon, bannon@ems.psu.edu
Save
  • Bannon, P. R., 2015: Entropy production and climate efficiency. J. Atmos. Sci., 72, 32683280, doi:10.1175/JAS-D-14-0361.1.

  • Bender, F., 2011: Planetary albedo in strongly forced climate, as simulated by the CMIP3 models. Theor. Appl. Climatol., 105, 529535, doi:10.1007/s00704-011-0411-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., and Y. A. Izrael, 1991: Anthropogenic Climate Change. University of Arizona Press, 485 pp.

  • Gassmann, A., and H.-J. Herzog, 2015: How is local material entropy production represented in a numerical model? Quart. J. Roy. Meteor. Soc., 141, 854869, doi:10.1002/qj.2404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goody, R., 2000: Sources and sinks of climate entropy. Quart. J. Roy. Meteor. Soc., 126, 19531970, doi:10.1002/qj.49712656619.

  • Gregg, M. C., 1984: Entropy generation in the ocean by small-scale mixing. J. Phys. Oceanogr., 14, 688711, doi:10.1175/1520-0485(1984)014<0688:EGITOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308, 14311435, doi:10.1126/science.1110252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2016: Global Physical Climatology. 2nd ed. Elsevier, 485 pp.

  • Hartmann, D. L., and P. Ceppi, 2014: Trends in the CERES dataset, 2000–2013: The effects of ice melt and jet shifts and comparison to climate models. J. Climate, 27, 24442456, doi:10.1175/JCLI-D-13-00411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffert, M. I., and C. Covey, 1992: Deriving global climate sensitivity from paleoclimate reconstructions. Nature, 360, 573576, doi:10.1038/360573a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, doi:10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2010: Ocean Circulation. Cambridge University Press, 791 pp.

  • IPCC, 2014: Climate Change 2014: Synthesis Report, Core Writing Team, R. K. Pachauri, and L. Meyer, Eds., IPCC, 151 pp. [Available online at https://www.ipcc.ch/report/ar5/syr/.]

  • Johnson, D. R., 1989: The forcing and maintenance of global monsoonal circulations: An isentropic analysis. Advances in Geophysics, Vol. 31, Academic Press, 43–316, doi:10.1016/S0065-2687(08)60053-9.

    • Crossref
    • Export Citation
  • Johnson, D. R., 2000: Entropy, the Lorenz energy cycle, and climate. General Circulation Model Development. D. A. Randall, Ed., Academic Press, 650–720.

    • Crossref
    • Export Citation
  • Kendall, M. G., 1962: Rank Correlation Methods. Hafner Publishing Company, 160 pp.

  • Laliberte, F., J. Zika, L. Mudryk, P. J. Kushner, J. Kjellsson, and K. Doos, 2015: Constrained work output of the moist atmospheric heat engine in a warming climate. Science, 347, 540543, doi:10.1126/science.1257103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571576, doi:10.1038/nclimate1840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucarini, V., 2009: Thermodynamic efficiency and entropy production in the climate system. Phys. Rev., 80E, 021118, doi:10.1103/PhysRevE.80.021118.

    • Search Google Scholar
    • Export Citation
  • Lucarini, V., K. Fraedrich, and F. Ragone, 2011: New results on the thermodynamic properties of the climate system. J. Atmos. Sci., 68, 24382458, doi:10.1175/2011JAS3713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucarini, V., R. Blender, C. Herbert, F. Ragone, S. Pascale, and J. Wouters, 2014: Mathematical and physical ideas for climate science. Rev. Geophys., 52, 809859, doi:10.1002/2013RG000446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, doi:10.2307/1907187.

  • O’Brien, D. M., 1997: A yardstick for global entropy-flux. Quart. J. Roy. Meteor. Soc., 123, 243260, doi:10.1002/qj.49712353711.

  • Pascale, S., J. M. Gregory, M. Ambaum, and R. Tailleux, 2011: Climate entropy budget of the HadCM3 atmosphere–ocean general circulation model and of FAMOUS, its low-resolution version. Climate Dyn., 36, 11891206, doi:10.1007/s00382-009-0718-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and J. Dias, 2012: Satellite estimates of precipitation-induced dissipation in the atmosphere. Science, 335, 953956, doi:10.1126/science.1215869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and I. M. Held, 2002a: Entropy budget of an atmosphere in radiative–convective equilibrium. Part I: Maximum work and frictional dissipation. J. Atmos. Sci., 59, 125139, doi:10.1175/1520-0469(2002)059<0125:EBOAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and I. M. Held, 2002b: Entropy budget of an atmosphere in radiative–convective equilibrium. Part II: Latent heat transport and moist processes. J. Atmos. Sci., 59, 140149, doi:10.1175/1520-0469(2002)059<0140:EBOAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Peixoto, J. P., A. H. Oort, M. de Almeida, and A. Tome, 1991: Entropy budget of the atmosphere. J. Geophys. Res., 96, 10 98110 988, doi:10.1029/91JD00721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M., and Coauthors, 2007: The GEOS-5 data assimilation system—Documentation of versions 531 5.0.1 and 5.1.0. NASA GSFC Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2007-104606, Vol. 27, 92 pp.

  • Schubert, G., and J. L. Mitchell, 2013: Planetary atmospheres as heat engines. Comparative Climatology of Terrestrial Planets, S. J. Mackwell et al., Eds., University of Arizona Press, 181–191.

    • Crossref
    • Export Citation
  • Shea, D., 2014: The Climate Data Guide: Trend analysis. [Available online at https://climatedataguide.ucar.edu/climate-data-tools-and-analysis/trend-analysis.]

  • Shimokawa, S., and H. Ozawa, 2001: On the thermodynamics of the oceanic general circulation: Entropy increase rates of an open dissipative system and surroundings. Tellus, 53A, 266277, doi:10.1034/j.1600-0870.2001.00122.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2016: Scaling of the entropy budget with surface temperature in radiative-convective equilibrium. J. Adv. Model. Earth Sci., 8, 11321150, doi:10.1002/2016MS000673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volk, T., and O. Pauluis, 2010: It is not the entropy you produce, rather, how you produce it. Philos. Trans. Roy. Soc. London, A365, 13171322, doi:10.1098/rstb.2010.0019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 318 81 12
PDF Downloads 410 93 13