Rossby Wave Breaking and Transient Eddy Forcing during Euro-Atlantic Circulation Regimes

Erik T. Swenson Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia

Search for other papers by Erik T. Swenson in
Current site
Google Scholar
PubMed
Close
and
David M. Straus Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by David M. Straus in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The occurrence of boreal winter Rossby wave breaking (RWB) along with the quantitative role of synoptic transient eddy momentum and heat fluxes directly associated with RWB are examined during the development of Euro-Atlantic circulation regimes using ERA-Interim. Results are compared to those from seasonal reforecasts made using the Integrated Forecast System model of ECWMF coupled to the NEMO ocean model. The development of both Scandinavian blocking and the Atlantic ridge is directly coincident with anticyclonic wave breaking (AWB); however, the associated transient eddy fluxes do not contribute to (and, in fact, oppose) ridge growth, as indicated by the local Eliassen–Palm (EP) flux divergence. Evidently, other factors drive development, and it appears that wave breaking assists more with ridge decay. The growth of the North Atlantic Oscillation (NAO) in its positive phase is independent of RWB in the western Atlantic but strongly linked to AWB farther downstream. During AWB, the equatorward flux of cold air at upper levels contributes to a westerly tendency just as much as the poleward flux of momentum. The growth of the negative phase of the NAO is almost entirely related to cyclonic wave breaking (CWB), during which equatorward momentum flux dominates at jet level, yet low-level heat fluxes dominate below. The reforecasts yield realistic frequencies of CWB and AWB during different regimes, as well as realistic estimates of their roles during development. However, a slightly weaker role of RWB is simulated, generally consistent with a weaker anomalous circulation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Erik T. Swenson, eswenso1@gmu.edu

Abstract

The occurrence of boreal winter Rossby wave breaking (RWB) along with the quantitative role of synoptic transient eddy momentum and heat fluxes directly associated with RWB are examined during the development of Euro-Atlantic circulation regimes using ERA-Interim. Results are compared to those from seasonal reforecasts made using the Integrated Forecast System model of ECWMF coupled to the NEMO ocean model. The development of both Scandinavian blocking and the Atlantic ridge is directly coincident with anticyclonic wave breaking (AWB); however, the associated transient eddy fluxes do not contribute to (and, in fact, oppose) ridge growth, as indicated by the local Eliassen–Palm (EP) flux divergence. Evidently, other factors drive development, and it appears that wave breaking assists more with ridge decay. The growth of the North Atlantic Oscillation (NAO) in its positive phase is independent of RWB in the western Atlantic but strongly linked to AWB farther downstream. During AWB, the equatorward flux of cold air at upper levels contributes to a westerly tendency just as much as the poleward flux of momentum. The growth of the negative phase of the NAO is almost entirely related to cyclonic wave breaking (CWB), during which equatorward momentum flux dominates at jet level, yet low-level heat fluxes dominate below. The reforecasts yield realistic frequencies of CWB and AWB during different regimes, as well as realistic estimates of their roles during development. However, a slightly weaker role of RWB is simulated, generally consistent with a weaker anomalous circulation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Erik T. Swenson, eswenso1@gmu.edu
Save
  • Balasubramanian, G., and S. T. Garner, 1997: The role of momentum fluxes in shaping the life cycle of a baroclinic wave. J. Atmos. Sci., 54, 510533, doi:10.1175/1520-0469(1997)054<0510:TROMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121144, doi:10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, doi:10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2007: Atmospheric circulation regimes: Can cluster analysis provide the number? J. Climate, 20, 22292250, doi:10.1175/JCLI4107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drouard, M., G. Rivière, and P. Arbogast, 2015: The link between the North Pacific climate variability and the North Atlantic Oscillation via downstream propagation of synoptic waves. J. Climate, 28, 39573976, doi:10.1175/JCLI-D-14-00552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. Lee, and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61, 145160, doi:10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., T. Woolings, and O. Martius, 2011: Persistent circulation regimes and preferred regime transitions in the North Atlantic. J. Atmos. Sci., 68, 28092825, doi:10.1175/JAS-D-11-046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gkioulekas, E., and K.-K. Tung, 2007: A new proof on net upscale energy cascade in two-dimensional and quasi-geostrophic turbulence. J. Fluid Mech., 576, 173189, doi:10.1017/S0022112006003934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holopainen, E. O., L. Rontu, and N.-C. Lau, 1982: The effect of large-scale transient eddies on the time mean flow in the atmosphere. J. Atmos. Sci., 39, 19721984, doi:10.1175/1520-0469(1982)039<1972:TEOLST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 31553172, doi:10.1175/JCLI-D-11-00265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, doi:10.1063/1.1762301.

  • Lau, N.-C., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 313328, doi:10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res., 117, 37743788, doi:10.1002/2014JD022796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: The mechanics of vacillation. J. Atmos. Sci., 20, 448465, doi:10.1175/1520-0469(1963)020<0448:TMOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machta, L., 1949: Dynamic characteristics of a tilted-trough model. J. Meteor., 6, 261265, doi:10.1175/1520-0469(1949)006<0261:DCOATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacRitchie, K., and P. E. Roundy, 2016: The two-way relationship between the Madden–Julian oscillation and anticyclonic wave breaking. Quart. J. Roy. Meteor. Soc., 142, 21592167, doi:10.1002/qj.2809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and Coauthors, 2016: Seasonal forecasts of tropical cyclone activity in a high atmospheric-resolution coupled prediction system. J. Climate, 29, 11791200, doi:10.1175/JCLI-D-15-0531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. C. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci., 64, 25762592, doi:10.1175/JAS3977.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. Woolings, 2013: Wave-breaking characteristics of Northern Hemisphere winter blocking: A two-dimensional approach. J. Climate, 26, 45354549, doi:10.1175/JCLI-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massacand, A. C., H. Wernli, and H. C. Davies, 2001: Influence of upstream diabatic heating upon an Alpine event of heavy precipitation. Mon. Wea. Rev., 129, 28222828, doi:10.1175/1520-0493(2001)129<2822:IOUDHU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, doi:10.1038/305593a0.

  • Michel, C., and G. Rivière, 2011: The link between Rossby wave breakings and weather regime transitions. J. Atmos. Sci., 68, 17301748, doi:10.1175/2011JAS3635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelangeli, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, doi:10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., and Coauthors, 2011: The new ECMWF seasonal forecast system (System 4). ECMWF Tech. Memo. 656, 51 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2011/11209-new-ecmwf-seasonal-forecast-system-system-4.pdf.]

  • Moore, R. W., O. Martius, and T. Spengler, 2010: The modulation of the subtropical and extratropical atmosphere in the Pacific basin in response to the Madden–Julian oscillation. Mon. Wea. Rev., 138, 27612779, doi:10.1175/2010MWR3194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., M. Nakamura, and J. L. Anderson, 1997: The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev., 125, 20742093, doi:10.1175/1520-0493(1997)125<2074:TROHAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743755, doi:10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1986: Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of the time-mean flow. J. Atmos. Sci., 43, 16571678, doi:10.1175/1520-0469(1986)043<1657:TDPOTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241266, doi:10.1175/JAS3850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryoo, J.-M., Y. Kaspi, D. W. Waugh, G. N. Kiladis, D. E. Waliser, E. J. Fetzer, and J. Kim, 2013: Impact of Rossby wave breaking on U.S. west coast winter precipitation during ENSO events. J. Climate, 26, 63606382, doi:10.1175/JCLI-D-12-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432, doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straus, D. M., 1983: On the role of the seasonal cycle. J. Atmos. Sci., 40, 303313, doi:10.1175/1520-0469(1983)040<0303:OTROTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straus, D. M., 2010: Synoptic-eddy feedbacks and circulation regime analysis. Mon. Wea. Rev., 138, 40264034, doi:10.1175/2010MWR3333.1.

  • Straus, D. M., S. Corti, and F. Molteni, 2007: Circulation regimes: Chaotic variability versus SST-forced predictability. J. Climate, 20, 22512272, doi:10.1175/JCLI4070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2008: Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci., 65, 28612876, doi:10.1175/2008JAS2632.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. F. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux diagnostics. J. Atmos. Sci., 43, 20702087, doi:10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., 1990: Multiple weather regimes over the North Atlantic: Analysis of precursors and successors. Mon. Wea. Rev., 118, 20562081, doi:10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., G.-H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45, 439462, doi:10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-H., and G. Magnusdottir, 2011: Tropospheric Rossby wave breaking and the SAM. J. Climate, 24, 21342146, doi:10.1175/2010JCLI4009.1.

  • Zhu, J., and Coauthors, 2015: ENSO prediction in Project Minerva: Sensitivity to atmospheric horizontal resolution and ensemble size. J. Climate, 28, 20802095, doi:10.1175/JCLI-D-14-00302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 549 194 16
PDF Downloads 523 164 11