Quantifying the Effect of Horizontal Propagation of Three-Dimensional Mountain Waves on the Wave Momentum Flux Using Gaussian Beam Approximation

Xin Xu Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Xin Xu in
Current site
Google Scholar
PubMed
Close
,
Jinjie Song Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Jinjie Song in
Current site
Google Scholar
PubMed
Close
,
Yuan Wang Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Yuan Wang in
Current site
Google Scholar
PubMed
Close
, and
Ming Xue Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work examines the influence of horizontal propagation of three-dimensional (3D) mountain waves on the wave momentum flux (WMF) within finite domains (e.g., the grid cell of general circulation models). Under the Wentzel–Kramers–Brillouin (WKB) approximation, analytical solutions are derived for hydrostatic nonrotating mountain waves using the Gaussian beam approximation (GBA), which incorporates both the wind vertical curvature effect and the height variation of stratification. The GBA solutions are validated against numerical simulations conducted using the Advanced Regional Prediction System (ARPS). In the situation of idealized terrain, wind, and stratification, the WMF obtained from the GBA shows a good agreement with the numerical simulation. The effect of wind curvature in enhancing the WMF is captured, although the WKB-based GBA solution tends to overestimate the WMF, especially at small Richardson numbers of order unity. For realistic terrain and/or atmospheric conditions, there are some biases between the WKB GBA and simulated WMFs, arising from, for example, the missing physics of wave reflection. Nonetheless, the decreasing trend of finite-domain WMF with height, because of the horizontal propagation of 3D mountain waves, can be represented fairly well. Using the GBA, a new scheme is proposed to parameterize the orographic gravity wave drag (OGWD) in numerical models. Comparison with the traditional OGWD parameterization scheme reveals that the GBA-based scheme tends to produce OGWD at higher altitudes, as the horizontal propagation of mountain waves can reduce the wave amplitude and thus inhibit wave breaking.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Yuan Wang, yuanasm@nju.edu.cn

Abstract

This work examines the influence of horizontal propagation of three-dimensional (3D) mountain waves on the wave momentum flux (WMF) within finite domains (e.g., the grid cell of general circulation models). Under the Wentzel–Kramers–Brillouin (WKB) approximation, analytical solutions are derived for hydrostatic nonrotating mountain waves using the Gaussian beam approximation (GBA), which incorporates both the wind vertical curvature effect and the height variation of stratification. The GBA solutions are validated against numerical simulations conducted using the Advanced Regional Prediction System (ARPS). In the situation of idealized terrain, wind, and stratification, the WMF obtained from the GBA shows a good agreement with the numerical simulation. The effect of wind curvature in enhancing the WMF is captured, although the WKB-based GBA solution tends to overestimate the WMF, especially at small Richardson numbers of order unity. For realistic terrain and/or atmospheric conditions, there are some biases between the WKB GBA and simulated WMFs, arising from, for example, the missing physics of wave reflection. Nonetheless, the decreasing trend of finite-domain WMF with height, because of the horizontal propagation of 3D mountain waves, can be represented fairly well. Using the GBA, a new scheme is proposed to parameterize the orographic gravity wave drag (OGWD) in numerical models. Comparison with the traditional OGWD parameterization scheme reveals that the GBA-based scheme tends to produce OGWD at higher altitudes, as the horizontal propagation of mountain waves can reduce the wave amplitude and thus inhibit wave breaking.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Yuan Wang, yuanasm@nju.edu.cn
Save
  • Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513539, doi:10.1017/S0022112067000515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broad, A. S., 1995: Linear theory of momentum fluxes in 3-D flows with turning of the mean wind with height. Quart. J. Roy. Meteor. Soc., 121, 18911902, doi:10.1002/qj.49712152806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broutman, D., J. W. Rottman, and S. D. Eckermann, 2002: Maslov’s method for stationary hydrostatic mountain waves. Quart. J. Roy. Meteor. Soc., 128, 11591171, doi:10.1256/003590002320373247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., J. Ma, and D. Broutman, 2015a: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part I: Numerical transform solutions. J. Atmos. Sci., 72, 23302347, doi:10.1175/JAS-D-14-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., D. Broutman, and H. Knight, 2015b: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part II: Analytical solutions. J. Atmos. Sci., 72, 23482365, doi:10.1175/JAS-D-14-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., 1984: Gravity waves saturation in the middle atmosphere: A review of theory and observations. Rev. Geophys., 22, 275308, doi:10.1029/RG022i003p00275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., G. J. Shutts, and J. R. Mitchell, 1998: A new gravity-wave-drag scheme incorporating anisotropic orography and low-level wave breaking: Impact upon the climate of the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 124, 463493, doi:10.1002/qj.49712454606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasha, A., O. Bühler, and J. Scinocca, 2008: Gravity wave refraction by three- dimensionally varying winds and the global transport of angular momentum. J. Atmos. Sci., 65, 28922906, doi:10.1175/2007JAS2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791799, doi:10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., A. Reinecke, and J. D. Doyle, 2014: Orographic wave drag over the Southern Ocean: A linear theory perspective. J. Atmos. Sci., 71, 42354252, doi:10.1175/JAS-D-14-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y. J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 18751902, doi:10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y. J., and J. Doyle, 2005: Extension of an orographic-drag parameterization scheme to incorporate orographic anisotropy and flow blocking. Quart. J. Roy. Meteor. Soc., 131, 18931921, doi:10.1256/qj.04.160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y. J., S. D. Eckermann, and H. Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, doi:10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. K. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320339, doi:10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 504 pp.

  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, doi:10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. Miller, 1997: A new subgrid-scale orographic drag parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, doi:10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, C. J., and S. D. Eckermann, 1995: A three-dimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary results for the middle atmosphere. J. Atmos. Sci., 52, 19591984, doi:10.1175/1520-0469(1995)052<1959:ATDNRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milton, S. F., and C. A. Wilson, 1996: The impact of parameterized subgrid-scale orographic forcing on systematic errors in a global NWP model. Mon. Wea. Rev., 124, 20232045, doi:10.1175/1520-0493(1996)124<2023:TIOPSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miranda, P. M. A., J. P. A. Martins, and M. A. C. Teixeira, 2009: Assessing wind profile effects on the global atmospheric torque. Quart. J. Roy. Meteor. Soc., 135, 807814, doi:10.1002/qj.393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyahara, S., 2006: A three dimensional wave activity flux applicable to inertio-gravity waves. SOLA, 2, 108111, doi:10.2151/sola.2006-028.

  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 10011039, doi:10.1002/qj.49711247406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, D. S., 1984: Analytical surface pressure and drag for linear hydrostatic flow over three-dimensional elliptical mountains. J. Atmos. Sci., 41, 10731084, doi:10.1175/1520-0469(1984)041<1073:ASPADF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulido, M., and C. Rodas, 2011: A higher-order ray approximation applied to orographic waves: Gaussian beam approximation. J. Atmos. Sci., 68, 4660, doi:10.1175/2010JAS3468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., and N. A. McFarlane, 2000: The parametrization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126, 23532393, doi:10.1002/qj.49712656802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1995: Gravity-wave drag parametrization over complex terrain: The effect of critical level absorption in directional wind-shear. Quart. J. Roy. Meteor. Soc., 121, 10051021, doi:10.1002/qj.49712152504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1998: Stationary gravity-wave structure in flows with directional wind shear. Quart. J. Roy. Meteor. Soc., 124, 14211442, doi:10.1002/qj.49712454905.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1980: Linear theory of stratified flow past an isolated mountain. Tellus, 32, 348364, doi:10.3402/tellusa.v32i4.10590.

  • Song, I.-S., and H.-Y. Chun, 2008: A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. J. Atmos. Sci., 65, 12041224, doi:10.1175/2007JAS2369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swarztrauber, P. N., 1982: Vectorizing the FFTs. Parallel Computations, G. Rodrigue, Ed., Academic Press, 51–83.

    • Crossref
    • Export Citation
  • Teixeira, M. A. C., and P. M. A. Miranda, 2004: The effect of wind shear and curvature on the gravity wave drag produced by a ridge. J. Atmos. Sci., 61, 26382643, doi:10.1175/JAS3282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., P. M. A. Miranda, and M. A. Valente, 2004: An analytical model of mountain wave drag for wind profiles with shear and curvature. J. Atmos. Sci., 61, 10401054, doi:10.1175/1520-0469(2004)061<1040:AAMOMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., P. M. A. Miranda, J. L. Argain, and M. A. Valente, 2005: Resonant gravity-wave drag enhancement in linear stratified flow over mountains. Quart. J. Roy. Meteor. Soc., 131, 17951814, doi:10.1256/qj.04.154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 19892010, doi:10.1256/qj.02.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., Y. Wang, and M. Xue, 2012: Momentum flux and flux divergence of gravity waves in directional shear flows over three-dimensional mountains. J. Atmos. Sci., 69, 37333744, doi:10.1175/JAS-D-12-044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., M. Xue, and Y. Wang, 2013: Gravity wave momentum flux in directional shear flows over three-dimensional mountains: Linear and nonlinear numerical solutions as compared to linear analytical solutions. J. Geophys. Res. Atmos., 118, 76707681, doi:10.1002/jgrd.50471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, doi:10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 631 302 24
PDF Downloads 125 34 1