An Improved Small-Angle Approximation for Forward Scattering and Its Use in a Fast Two-Component Radiative Transfer Method

Bingqiang Sun Department of Physics and Astronomy, Texas A&M University, College Station, Texas

Search for other papers by Bingqiang Sun in
Current site
Google Scholar
PubMed
Close
,
George W. Kattawar Department of Physics and Astronomy, Texas A&M University, College Station, Texas

Search for other papers by George W. Kattawar in
Current site
Google Scholar
PubMed
Close
,
Ping Yang Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Ping Yang in
Current site
Google Scholar
PubMed
Close
, and
Eli Mlawer Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Eli Mlawer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The vector radiative transfer equation is decomposed into two components: a forward component and a diffuse component. The forward component is analytically solved with a small-angle approximation. The solution of the forward component becomes the source for the diffuse component. In the present study, the diffuse component is solved using the successive order of scattering method. The strong anisotropy of the scattering of radiation by a medium is confined to the forward component for which a semianalytical solution is given; consequently, the diffuse component slowly varies as a function of scattering angle once the forward-scattering peak is removed. Moreover, the effect on the diffuse component induced by the forward component can be interpreted by including the low orders of the generalized spherical function expansion of the forward component or even replaced by the Dirac delta function. As a result, the computational effort can be significantly reduced. The present two-component method is validated using the benchmarks related to predefined aerosol and cloud layers with a totally absorbing underlying surface. As a canonical application, the optical properties of water clouds and ice clouds used for the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 cloud-property retrieval products are used for radiative transfer simulations under cloudy conditions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bingqiang Sun, bqsun@tamu.edu

Abstract

The vector radiative transfer equation is decomposed into two components: a forward component and a diffuse component. The forward component is analytically solved with a small-angle approximation. The solution of the forward component becomes the source for the diffuse component. In the present study, the diffuse component is solved using the successive order of scattering method. The strong anisotropy of the scattering of radiation by a medium is confined to the forward component for which a semianalytical solution is given; consequently, the diffuse component slowly varies as a function of scattering angle once the forward-scattering peak is removed. Moreover, the effect on the diffuse component induced by the forward component can be interpreted by including the low orders of the generalized spherical function expansion of the forward component or even replaced by the Dirac delta function. As a result, the computational effort can be significantly reduced. The present two-component method is validated using the benchmarks related to predefined aerosol and cloud layers with a totally absorbing underlying surface. As a canonical application, the optical properties of water clouds and ice clouds used for the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 cloud-property retrieval products are used for radiative transfer simulations under cloudy conditions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bingqiang Sun, bqsun@tamu.edu
Save
  • Adams, C. N., and G. W. Kattawar, 1970: Solutions of the equations of radiative transfer by an invariant imbedding approach. J. Quant. Spectrosc. Radiat. Transfer, 10, 341356, doi:10.1016/0022-4073(70)90101-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, C. N., and G. W. Kattawar, 1978: Radiative transfer in spherical shell atmospheres: I. Rayleigh scattering. Icarus, 35, 139151, doi:10.1016/0019-1035(78)90067-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budak, V., and Y. A. Ilyushin, 2010: Development of the small angle approximation of the radiative transfer theory taking into account the photon path distribution function. Atmos. Oceanic Opt., 23, 181185, doi:10.1134/S1024856010030048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaikovskaya, L. I., I. L. Katsev, A. S. Prikhach, and E. P. Zege, 1999: Fast code to compute polarized radiation transfer in the atmosphere-ocean and atmosphere-Earth systems. Proc. Int. Geoscience and Remote Sensing Symp., Hamburg, Germany, IEEE, 1398–1400, doi:10.1109/IGARSS.1999.774643.

    • Crossref
    • Export Citation
  • Chandrasekhar, S., 1960: Radiative Transfer. Dover Publications, 393 pp.

  • Coakley, J. A., and P. Chylek, 1975: The two-stream approximation in radiative transfer: Including the angle of the incident radiation. J. Atmos. Sci., 32, 409418, doi:10.1175/1520-0469(1975)032<0409:TTSAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coulson, K. L., J. V. Dave, and Z. Sckera, 1960: Tables Related to Radiation Emerging from a Planetary Atmosphere with Rayleigh Scattering. University of California Press, 548 pp.

  • de Haan, J. F., P. B. Bosma, and J. W. Hovenier, 1987: The adding method for multiple scattering calculations of polarized light. Astron. Astrophys., 183, 371391.

    • Search Google Scholar
    • Export Citation
  • de Rooij, W. A., 1985: Reflection and transmission of polarized light by planetary atmospheres. Ph.D. dissertation, Vrije University, 241 pp. [Available online at https://www.iaea.org/inis/collection/NCLCollectionStore/_Public/17/037/17037929.pdf.]

  • Dolin, L., 1966: Propagation of a narrow beam of light in a medium with strongly anisotropic scattering. Radiophys. Quantum Electron., 9, 4047.

    • Search Google Scholar
    • Export Citation
  • Dolin, L., 1983: Passage of a pulsed light signal through an absorbing medium with strongly anisotropic scattering. Radiophys. Quantum Electron., 26, 220228, doi:10.1007/BF01045097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domke, H., 1974: Polarized light in deep layers of a semiinfinite atmosphere. Astrophys., 10, 125133, doi:10.1007/BF01006131.

  • Downing, H. D., and D. Williams, 1975: Optical constants of water in the infrared. J. Geophys. Res., 80, 16561661, doi:10.1029/JC080i012p01656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emde, C., and Coauthors, 2015: IPRT polarized radiative transfer model intercomparison project—Phase A. J. Quant. Spectrosc. Radiat. Transfer, 164, 836, doi:10.1016/j.jqsrt.2015.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. F., 1998: The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci., 55, 429446, doi:10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R., and C. Siewert, 1986: A generalized spherical harmonics solution for radiative transfer models that include polarization effects. J. Quant. Spectrosc. Radiat. Transfer, 36, 401423, doi:10.1016/0022-4073(86)90097-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goudsmit, S., and J. Saunderson, 1940: Multiple scattering of electrons. Phys. Rev., 57, 2429, doi:10.1103/PhysRev.57.24.

  • Grant, I. P., and G. E. Hunt, 1969a: Discrete space theory of radiative transfer. I. Fundamentals. Proc. Roy. Soc. London, 313A, 183197, doi:10.1098/rspa.1969.0187.

    • Search Google Scholar
    • Export Citation
  • Grant, I. P., and G. E. Hunt, 1969b: Discrete space theory of radiative transfer. II. Stability and non-negativity. Proc. Roy. Soc. London, 313A, 199216, doi:10.1098/rspa.1969.0188.

    • Search Google Scholar
    • Export Citation
  • Hale, G. M., and M. R. Querry, 1973: Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt., 12, 555563, doi:10.1364/AO.12.000555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirleman, E. D., 1991: General solution to the inverse near-forward-scattering particle-sizing problem in multiple-scattering environments: Theory. Appl. Opt., 30, 48324838, doi:10.1364/AO.30.004832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hovenier, J., 1971: Multiple scattering of polarized light in planetary atmospheres. Astron. Astrophys., 13, 729.

  • Hovenier, J., and C. van der Mee, 1983: Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere. Astron. Astrophys., 128, 116.

    • Search Google Scholar
    • Export Citation
  • Hu, Y.-X., B. Wielicki, B. Lin, G. Gibson, S.-C. Tsay, K. Stamnes, and T. Wong, 2000: δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting. J. Quant. Spectrosc. Radiat. Transfer, 65, 681690, doi:10.1016/S0022-4073(99)00147-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., P. Yang, G. Kattawar, and K.-N. Liou, 2015: Effect of mineral dust aerosol aspect ratio on polarized reflectance. J. Quant. Spectrosc. Radiat. Transfer, 151, 97109, doi:10.1016/j.jqsrt.2014.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irvine, W. M., 1968: Diffuse reflection and transmission by cloud and dust layers. J. Quant. Spectrosc. Radiat. Transfer, 8, IN45IN485, doi:10.1016/S0022-4073(68)80127-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishimaru, A., 1978: Wave Propagation and Scattering in Random Media. Vol. 2. Academic Press, 320 pp.

  • Joseph, J. H., W. Wiscombe, and J. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 24522459, doi:10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karp, A. H., J. Greenstadt, and J. A. Fillmore, 1980: Radiative transfer through an arbitrarily thick, scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 24, 391406, doi:10.1016/0022-4073(80)90074-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattawar, G. W., and G. N. Plass, 1976: Asymptotic radiance and polarization in optically thick media: Ocean and clouds. Appl. Opt., 15, 31663178, doi:10.1364/AO.15.003166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattawar, G. W., G. N. Plass, and F. E. Catchings, 1973: Matrix operator theory of radiative transfer. 2: Scattering from maritime haze. Appl. Opt., 12, 10711084, doi:10.1364/AO.12.001071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., and Harshvardhan, 1986: Comparative accuracy of selected multiple scattering approximations. J. Atmos. Sci., 43, 784801, doi:10.1175/1520-0469(1986)043<0784:CAOSMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., 1997: Small-angle approximations of the radiative transfer theory. J. Phys., 30D, 2837, doi:10.1088/0022-3727/30/20/009.

    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., and Coauthors, 2010: Benchmark results in vector atmospheric radiative transfer. J. Quant. Spectrosc. Radiat. Transfer, 111, 19311946, doi:10.1016/j.jqsrt.2010.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuga, Y., A. Ishimaru, H.-W. Chang, and L. Tsang, 1986: Comparisons between the small-angle approximation and the numerical solution for radiative transfer theory. Appl. Opt., 25, 38033805, doi:10.1364/AO.25.003803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuščer, I., and M. Ribarič, 1959: Matrix formalism in the theory of diffusion of light. Opt. Acta, 6, 4251, doi:10.1080/713826264.

  • Kylling, A., and K. Stamnes, 1992: Efficient yet accurate solution of the linear transport equation in the presence of internal sources: The exponential-linear-in-depth approximation. J. Comput. Phys., 102, 265276, doi:10.1016/0021-9991(92)90371-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenoble, J., 1985: Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. Studies in Geophysical Optics and Remote Sensing, Vol. 1, A. Deepak, 300 pp.

  • Lenoble, J., M. Herman, J. Deuzé, B. Lafrance, R. Santer, and D. Tanré, 2007: A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols. J. Quant. Spectrosc. Radiat. Transfer, 107, 479507, doi:10.1016/j.jqsrt.2007.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., 1973: A numerical experiment on Chandrasekhar’s discrete-ordinate method for radiative transfer: Applications to cloudy and hazy atmospheres. J. Atmos. Sci., 30, 13031326, doi:10.1175/1520-0469(1973)030<1303:ANEOCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., 1974: Analytic two-stream and four-stream solutions for radiative transfer. J. Atmos. Sci., 31, 14731475, doi:10.1175/1520-0469(1974)031<1473:ATSAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., 2002: An Introduction to Atmospheric Radiation. 2nd ed. Vol. 84, Academic Press, 583 pp.

  • Liou, K.-N., Q. Fu, and T. P. Ackerman, 1988: A simple formulation of the delta-four-stream approximation for radiative transfer parameterizations. J. Atmos. Sci., 45, 19401948, doi:10.1175/1520-0469(1988)045<1940:ASFOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshak, A., and A. Davis, 2005: 3D Radiative Transfer in Cloudy Atmospheres. Springer, 686 pp., doi:10.1007/3-540-28519-9.

    • Crossref
    • Export Citation
  • McKellar, B. H., and M. A. Box, 1981: The scaling group of the radiative transfer equation. J. Atmos. Sci., 38, 10631068, doi:10.1175/1520-0469(1981)038<1063:TSGOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meador, W., and W. Weaver, 1980: Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 37, 630643, doi:10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., and M. Duan, 2004: A successive order of scattering model for solving vector radiative transfer in the atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 87, 243259, doi:10.1016/j.jqsrt.2003.12.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2002: Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: A microphysical derivation from statistical electromagnetics. Appl. Opt., 41, 71147134, doi:10.1364/AO.41.007114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2006: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, 445 pp.

  • Mobley, C. D., 1994: Light and Water: Radiative Transfer in Natural Waters. Academic Press, 592 pp.

  • Muldashev, T. Z., A. I. Lyapustin, and U. M. Sultangazin, 1999: Spherical harmonics method in the problem of radiative transfer in the atmosphere-surface system. J. Quant. Spectrosc. Radiat. Transfer, 61, 393404, doi:10.1016/S0022-4073(98)00025-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myneni, R., G. Asrar, and E. Kanemasu, 1987: Light scattering in plant canopies: The method of Successive Orders of Scattering Approximations (SOSA). Agric. For. Meteor., 39, 112, doi:10.1016/0168-1923(87)90011-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. Tanaka, 1988: Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40, 5169, doi:10.1016/0022-4073(88)90031-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., M. Tanaka, and T. Yamauchi, 1983: Retrieval of the optical properties of aerosols from aureole and extinction data. Appl. Opt., 22, 29512959, doi:10.1364/AO.22.002951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Natraj, V., K.-F. Li, and Y. L. Yung, 2009: Rayleigh scattering in planetary atmospheres: Corrected tables through accurate computation of X and Y functions. Astrophys. J., 691, 1909, doi:10.1088/0004-637X/691/2/1909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plass, G. N., and G. W. Kattawar, 1968: Monte Carlo calculations of light scattering from clouds. Appl. Opt., 7, 415419, doi:10.1364/AO.7.000415.

  • Plass, G. N., G. W. Kattawar, and F. E. Catchings, 1973: Matrix operator theory of radiative transfer. 1: Rayleigh scattering. Appl. Opt., 12, 314329, doi:10.1364/AO.12.000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2016: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, doi:10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, J. F., 1970: The delta function approximation in radiative transfer theory. J. Atmos. Sci., 27, 943949, doi:10.1175/1520-0469(1970)027<0943:TDFAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., 1965: Radiative Transfer on Discrete Spaces. International Series in Pure and Applied Mathematics, Vol. 74, Pergamon Press, 474 pp.

    • Crossref
    • Export Citation
  • Remizovich, V., and S. A. Shekhmamet’ev, 1990: Diffusive propagation of radiation in an absorbing dispersion medium with highly elongated scattering indicatrix in the case of an obliquely incident broad beam. Radiophys. Quantum Electron., 33, 156165, doi:10.1007/BF01040817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remizovich, V., D. Rogozkin, and M. Ryazanov, 1982: Propagation of a narrow modulated light beam in a scattering medium with fluctuations of the photon pathlengths in multiple scattering. Radiophys. Quantum Electron., 25, 639645, doi:10.1007/BF01034936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanova, L. M., 1962: The solution of the radiation-transfer equation for the case when the indicatrix of scattering greatly differs from the spherical one. I. Opt. Spectrosc., 13, 238241.

    • Search Google Scholar
    • Export Citation
  • Romanova, L. M., 1963: Radiation field in plane layers of a turbid medium with highly anisotropic scattering. Opt. Spectrosc., 14, 135.

  • Rozanov, V. V., and A. I. Lyapustin, 2010: Similarity of radiative transfer equation: Error analysis of phase function truncation techniques. J. Quant. Spectrosc. Radiat. Transfer, 111, 19641979, doi:10.1016/j.jqsrt.2010.03.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, F., K. Stamnes, and F. Weng, 1999: VDISORT: An improved and generalized discrete ordinate method for polarized (vector) radiative transfer. J. Quant. Spectrosc. Radiat. Transfer, 61, 105122, doi:10.1016/S0022-4073(97)00215-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, W. T., 1963: The theory of small-angle multiple scattering of fast charged particles. Rev. Mod. Phys., 35, 231, doi:10.1103/RevModPhys.35.231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobolev, V. V., 1975: Light Scattering in Planetary Atmospheres. Pergamon Press, 254 pp.

    • Crossref
    • Export Citation
  • Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 25022509, doi:10.1364/AO.27.002502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S.-C. Tsay, W. Wiscombe, and I. Laszlo, 2000: DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: Documentation of methodology. NASA Goddard Space Flight Center DISORT Rep. v1.1, 112 pp.

  • Sun, B., G. W. Kattawar, and P. Yang, 2016: Radiance and polarization in the diffusion region with an arbitrary scattering phase matrix. J. Quant. Spectrosc. Radiat. Transfer, 183, 154161, doi:10.1016/j.jqsrt.2016.06.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, M., and T. Nakajima, 1977: Effects of oceanic turbidity and index of refraction of hydrosols on the flux of solar radiation in the atmosphere-ocean system. J. Quant. Spectrosc. Radiat. Transfer, 18, 93111, doi:10.1016/0022-4073(77)90130-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tynes, H. H., G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, 2001: Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations. Appl. Opt., 40, 400412, doi:10.1364/AO.40.000400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Hulst, H., 1968: Radiative transfer in thick atmospheres with an arbitrary scattering function. Bull. Astron. Inst. Neth., 20, 7786.

    • Search Google Scholar
    • Export Citation
  • van de Hulst, H., 1970: The spectrum of the anisotropic transfer equation. Astron. Astrophys., 9, 366373.

  • van de Hulst, H., 1980: Multiple Light Scattering: Tables, Formulas, and Applications. Vol. 1. Academic Press, 317 pp.

  • van de Hulst, H., 1981: Light Scattering by Small Particles. Dover Books on Physics, Dover Publications, 496 pp.

  • van de Hulst, H., and K. Grossman, 1968: Multiple light scattering in planetary atmospheres. The Atmospheres of Venus and Mars, J. C. Brand and M. B. McElroy, Eds., Gordon & Breach, 35–55.

  • Wang, M. C., and E. Guth, 1951: On the theory of multiple scattering, particularly of charged particles. Phys. Rev., 84, 1092, doi:10.1103/PhysRev.84.1092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinman, J., J. Twitty, S. Browning, and B. Herman, 1975: Derivation of phase functions from multiply scattered sunlight transmitted through a hazy atmosphere. J. Atmos. Sci., 32, 577583, doi:10.1175/1520-0469(1975)032<0577:DOPFFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., 1977a: The delta–M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci., 34, 14081422, doi:10.1175/1520-0469(1977)034<1408:TDMRYA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., 1977b: The delta-Eddington approximation for a vertically inhomogeneous atmosphere. NCAR Tech. Note NCAR/TN-121+STR, 66 pp., doi:10.5065/D65H7D6Z.

    • Crossref
    • Export Citation
  • Wolfram, S., 1999: The Mathematica. Cambridge University Press, 1470 pp.

  • Yang, C. N., 1951: Actual path length of electrons in foils. Phys. Rev., 84, 599, doi:10.1103/PhysRev.84.599.

  • Yang, P., and K. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys., 71, 223248.

    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, doi:10.1175/JAS-D-12-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zege, E. P., and I. N. Polonsky, 1993: Multicomponent approach to light propagation in clouds and mists. Appl. Opt., 32, 28032812, doi:10.1364/AO.32.002803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zege, E. P., and L. I. Chaikovskaya, 1996: New approach to the polarized radiative transfer problem. J. Quant. Spectrosc. Radiat. Transfer, 55, 1931, doi:10.1016/0022-4073(95)00144-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zege, E. P., and L. I. Chaikovskaya, 2000: Approximate theory of linearly polarized light propagation through a scattering medium. J. Quant. Spectrosc. Radiat. Transfer, 66, 413435, doi:10.1016/S0022-4073(99)00171-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zege, E. P., I. N. Polonsky, and L. I. Chaikovskaya, 1987: Peculiarities of the radiation beam propagation at slant illumination of absorbing anisotropically scattering medium. Izv. Akad. Nauk SSSR, 23, 486492.

    • Search Google Scholar
    • Export Citation
  • Zege, E. P., I. L. Katsev, and I. I. Polonsky, 1988: A modified small-angle diffusion approximation taking into account the specific form of the scattering phase function at small angles. Atmos. Opt., 1, 1927.

    • Search Google Scholar
    • Export Citation
  • Zege, E. P., A. P. Ivanov, and I. L. Katsev, 1991: Image Transfer through a Scattering Medium. Springer-Verlag, 349 pp.

    • Crossref
    • Export Citation
  • Zhai, P.-W., G. W. Kattawar, and P. Yang, 2008: Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method. Appl. Opt., 47, 10371047, doi:10.1364/AO.47.001037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P.-W., Y. Hu, C. R. Trepte, and P. L. Lucker, 2009: A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method. Opt. Express, 17, 20572079, doi:10.1364/OE.17.002057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 871 240 19
PDF Downloads 397 97 12