On the Tropical Atmospheric Signature of El Niño

Ángel F. Adames NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

Search for other papers by Ángel F. Adames in
Current site
Google Scholar
PubMed
Close
and
John M. Wallace Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by John M. Wallace in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The linear atmospheric signature of ENSO, obtained by regressing fields of geopotential height Z, wind, vertical velocity, and rainfall upon the Niño-3.4 sea surface temperature (SST) index, is partitioned into zonally symmetric and eddy components. The zonally symmetric component is thermally forced by the narrowing and intensification of the zonally averaged equatorial rain belt during El Niño and mechanically forced by the weakening of the upper-tropospheric equatorial stationary waves and their associated flux of wave activity. The eddy component of the ENSO signature is decomposed into barotropic (BT) and baroclinic (BC) contributions, the latter into first and second modal structures BC1 and BC2, separable functions of space (x, y), and pressure p, using eigenvector analysis. BC1 exhibits a nearly equatorially symmetric planetary wave structure comprising three dumbbell-shaped features suggestive of equatorial Rossby waves, with out-of-phase wind and geopotential height perturbations in the upper and lower troposphere. BC1 and BT exhibit coincident centers of action. In regions of the tropics where the flow in the climatological-mean stationary waves is cyclonic, BT reinforces BC1, and vice versa, in accordance with vorticity balance considerations. BC1 and BT dominate the eddy ENSO signature in the free atmosphere. Most of the residual is captured by BC2, which exhibits a shallow, convergent boundary layer signature forced by the weakening of the equatorial cold tongue in SST. The anomalous boundary layer convergence drives a deep convection signature whose upper-tropospheric outflow is an integral part of the BC1 contribution to the ENSO signature.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ángel F. Adames, angel.adames-corraliza@noaa.gov

Abstract

The linear atmospheric signature of ENSO, obtained by regressing fields of geopotential height Z, wind, vertical velocity, and rainfall upon the Niño-3.4 sea surface temperature (SST) index, is partitioned into zonally symmetric and eddy components. The zonally symmetric component is thermally forced by the narrowing and intensification of the zonally averaged equatorial rain belt during El Niño and mechanically forced by the weakening of the upper-tropospheric equatorial stationary waves and their associated flux of wave activity. The eddy component of the ENSO signature is decomposed into barotropic (BT) and baroclinic (BC) contributions, the latter into first and second modal structures BC1 and BC2, separable functions of space (x, y), and pressure p, using eigenvector analysis. BC1 exhibits a nearly equatorially symmetric planetary wave structure comprising three dumbbell-shaped features suggestive of equatorial Rossby waves, with out-of-phase wind and geopotential height perturbations in the upper and lower troposphere. BC1 and BT exhibit coincident centers of action. In regions of the tropics where the flow in the climatological-mean stationary waves is cyclonic, BT reinforces BC1, and vice versa, in accordance with vorticity balance considerations. BC1 and BT dominate the eddy ENSO signature in the free atmosphere. Most of the residual is captured by BC2, which exhibits a shallow, convergent boundary layer signature forced by the weakening of the equatorial cold tongue in SST. The anomalous boundary layer convergence drives a deep convection signature whose upper-tropospheric outflow is an integral part of the BC1 contribution to the ENSO signature.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ángel F. Adames, angel.adames-corraliza@noaa.gov
Save
  • Adames, Á. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 20072026, doi:10.1175/JAS-D-13-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical Oceans. J. Climate, 22, 41824196, doi:10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvo Fernandez, N., R. R. G. Herrera, D. G. Puyol, E. Hernandez Martin, R. R. Garcia, L. G. Presa, and P. R. Rodriguez, 2004: Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J. Climate, 17, 39343946, doi:10.1175/1520-0442(2004)017<3934:AOTESI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631, doi:10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., S. E. Zebiak, and M. A. Cane, 2001: Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. J. Atmos. Sci., 58, 13711394, doi:10.1175/1520-0469(2001)058<1371:RROEHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2007: Structure of the annual-mean equatorial planetary waves in the ERA-40 reanalyses. J. Atmos. Sci., 64, 28622880, doi:10.1175/JAS3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm flux cross sections for the troposphere. J. Atmos. Sci., 37, 26002615, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and D. W. J. Thompson, 2012: Equatorial planetary waves and their signature in atmospheric variability. J. Atmos. Sci., 69, 857874, doi:10.1175/JAS-D-11-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnik, N., R. Seager, N. Naik, M. Cane, and M. Ting, 2010: The role of linear wave refraction in the transient eddy–mean flow response to tropical Pacific SST anomalies. Quart. J. Roy. Meteor. Soc., 136, 21322146, doi:10.1002/qj.688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, X., J. D. Neelin, and C. R. Mechoso, 2015: El Niño–Southern Oscillation sea level pressure anomalies in the western Pacific: Why are they there? J. Climate, 28, 88608872, doi:10.1175/JCLI-D-14-00716.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, X., J. D. Neelin, and C. Mechoso, 2016: Baroclinic-to-barotropic pathway in El Niño–Southern Oscillation teleconnections from the viewpoint of a barotropic Rossby wave source. J. Atmos. Sci., 73, 49895002, doi:10.1175/JAS-D-16-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276298, doi:10.1175/JCLI3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, doi:10.2151/jmsj1965.44.1_25.

  • Nolan, D. S., S. W. Powell, C. Zhang, and B. E. Mapes, 2010: Idealized simulations of the ITCZ and its multi-level flows. J. Atmos. Sci., 67, 40284053, doi:10.1175/2010JAS3417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paek, H., and H.-P. Huang, 2012: A comparison of the interannual variability in atmospheric angular momentum and length-of-day using multiple reanalysis data sets. J. Geophys. Res., 117, D20102, doi:10.1029/2012JD018105.

    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., H. F. Diaz, and M. P. Hoerling, 2004: Change in the tropical Hadley cell since 1950. The Hadley Circulation: Past, Present, and Future, H. F. Diaz and R. S. Bradley, Eds., Advances in Global Change Research, Vol. 21, Cambridge University Press, 85–120, doi:10.1007/978-1-4020-2944-8_4.

    • Crossref
    • Export Citation
  • Randel, W. J., R. R. Garcia, N. Calvo, and D. Marsh, 2009: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett., 36, L15822, doi:10.1029/2009GL039343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosen, R. D., D. A. Salstein, T. M. Eubanks, J. O. Dickey, and J. A. Steppe, 1984: An El Niño signal in atmospheric angular momentum and Earth rotation. Science, 225, 411414, doi:10.1126/science.225.4660.411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P., and B. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., Naik, M. Ting, M. A. Cane, N. Harnik, and Y. Kushnir, 2010: Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: Variability of transient eddy propagation in the Pacific–North America sector. Quart. J. Roy. Meteor. Soc., 136, 277296, doi:10.1002/qj.588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., J. J. Duan, J. C. McWilliams, M. Münnich, and J. D. Neelin, 2002: Entrainment, Rayleigh friction, and boundary layer winds over the tropical Pacific. J. Climate, 15, 3044, doi:10.1175/1520-0442(2002)015<0030:ERFABL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, N., E. Gerber, A. Sobel, and L. Polvani, 2013: Understanding Hadley cell expansion versus contraction: Insights from simplified models and implications for recent observations. J. Climate, 26, 43044321, doi:10.1175/JCLI-D-12-00598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1976: Spatial and temporal variations of the Southern Oscillation. Quart. J. Roy. Meteor. Soc., 102, 639653, doi:10.1002/qj.49710243310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 1987: On the evolution of the Southern Oscillation. Mon. Wea. Rev., 115, 30783096, doi:10.1175/1520-0493(1987)115<3078:OTEOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2000: The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. J. Climate, 13, 43584365, doi:10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and L. Smith, 2009: Variations in the three-dimensional structure of the atmospheric circulation with different flavors of El Niño. J. Climate, 22, 29782991, doi:10.1175/2008JCLI2691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troup, A. J., 1965: The “southern oscillation.” Quart. J. Roy. Meteor. Soc., 91, 490506, doi:10.1002/qj.49709139009.

  • van Loon, H., and R. A. Madden, 1981: The Southern Oscillation. Part I: Global associations with pressure and temperature in northern winter. Mon. Wea. Rev., 109, 11501162, doi:10.1175/1520-0493(1981)109<1150:TSOPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, G. T., 1924: Correlation in seasonal variations of weather, IX. A further study of world weather. Mem. India Meteor. Dept., 24, 275333. [Available online at https://www.rmets.org/sites/default/files/classicindia2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 5384. [Available online at https://www.rmets.org/sites/default/files/ww5.pdf.]

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259, doi:10.1029/97JC02905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467, doi:10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of tropical atmosphere to local, steady forcing. Mon. Wea. Rev., 100, 518541, doi:10.1175/1520-0493(1972)100<0518:ROTTAT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7, 17191736, doi:10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., M. McGauley, and N. A. Bond, 2004: Shallow meridional circulation in the tropical eastern Pacific. J. Climate, 17, 133139, doi:10.1175/1520-0442(2004)017<0133:SMCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., D. S. Nolan, C. D. Thorncroft, and N. Hanh, 2008: Shallow meridional circulations in the tropical atmosphere. J. Climate, 21, 34533470, doi:10.1175/2007JCLI1870.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 467 150 6
PDF Downloads 423 130 4