Lee Mixing and Nocturnal Structure over Gentle Topography

L. Mahrt NorthWest Research Associates, Corvallis, Oregon

Search for other papers by L. Mahrt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study analyzes measurements from a network of sonic anemometers over gentle topography to investigate the possibility of nocturnal lee-generated turbulence. Although the valley side slopes are less than 6° and extend only about 12 m above the floor of the valley, the turbulence can be enhanced in the lee of one of the slopes. Significant lee turbulence develops downwind from an abrupt slope transition between a miniplateau and the modest valley side slope. Lee-generated turbulence is not observed on the opposite slope, where the slope magnitude gradually decreases with height. With intermediate 1-m wind speeds of roughly 2–4 m s−1, the cold pool is advected up the downwind slope. This downwind displacement of the cold pool and warming by lee-generated turbulence, when it occurs, leads to significant horizontal asymmetry of the temperature across the valley. For stronger winds, the cold pool is eliminated by mixing. For weak winds, a more traditional cold pool forms centered on the valley floor with limited or no lee-generated turbulence. While the impact of the gentle topography is modest compared to more dramatic terrain, less organized gentle topography covers a large fraction of Earth’s surface. However, with gentle topography, various relationships show substantial scatter, and the generalization of results from an individual network is probably not possible.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Larry Mahrt, mahrt@nwra.com

Abstract

This study analyzes measurements from a network of sonic anemometers over gentle topography to investigate the possibility of nocturnal lee-generated turbulence. Although the valley side slopes are less than 6° and extend only about 12 m above the floor of the valley, the turbulence can be enhanced in the lee of one of the slopes. Significant lee turbulence develops downwind from an abrupt slope transition between a miniplateau and the modest valley side slope. Lee-generated turbulence is not observed on the opposite slope, where the slope magnitude gradually decreases with height. With intermediate 1-m wind speeds of roughly 2–4 m s−1, the cold pool is advected up the downwind slope. This downwind displacement of the cold pool and warming by lee-generated turbulence, when it occurs, leads to significant horizontal asymmetry of the temperature across the valley. For stronger winds, the cold pool is eliminated by mixing. For weak winds, a more traditional cold pool forms centered on the valley floor with limited or no lee-generated turbulence. While the impact of the gentle topography is modest compared to more dramatic terrain, less organized gentle topography covers a large fraction of Earth’s surface. However, with gentle topography, various relationships show substantial scatter, and the generalization of results from an individual network is probably not possible.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Larry Mahrt, mahrt@nwra.com
Save
  • Adler, B., C. D. Whiteman, S. Hoch, M. Lehner, and N. Kalthoff, 2011: Warm-air intrusions in Arizona’s Meteor Crater. J. Appl. Meteor. Climatol., 51, 10101025, doi:10.1175/JAMC-D-11-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and J. Hunt, 1998: Turbulent flow over hills and waves. Annu. Rev. Fluid Mech., 30, 507538, doi:10.1146/annurev.fluid.30.1.507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., I. N. Harman, and J. J. Finnigan, 2012: The wind in the willows: Flows in forest canopies in complex terrain. Annu. Rev. Fluid Mech., 44, 479504, doi:10.1146/annurev-fluid-120710-101036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, J., J. Mann, A. Bechmann, M. S. Courtney, and H. E. Jørgensen, 2011: The Bolund experiment, Part I: Flow over a steep, three-dimensional hill. Bound.-Layer Meteor., 141, 219243, doi:10.1007/s10546-011-9636-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., C. Whiteman, S. W. Hoch, and M. Lehner, 2011: A mass flux model of cold-air drainage intrusions into a closed basin. J. Appl. Meteor. Climatol., 50, 933943, doi:10.1175/2010JAMC2540.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, P. S., and J. C. R. Hunt, 1975: Turbulent wind flow over a low hill. Bound.-Layer Meteor., 101, 929956, doi:10.1002/qj.49710143015.

    • Search Google Scholar
    • Export Citation
  • Lehner, M., and Coauthors, 2016a: The METCRAX II field experiment: A study of downslope windstorm-type flows in Arizona’s Meteor Crater. Bull. Amer. Meteor. Soc., 97, 217235, doi:10.1175/BAMS-D-14-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, M., R. Rottuno, and C. Whiteman, 2016b: Flow regimes over a basin induced by upstream katabatic flows—An idealized modeling study. J. Atmos. Sci., 119, 109134, doi:10.1175/JAS-D-16-0114.1.

    • Search Google Scholar
    • Export Citation
  • Leith, C., 1973: The standard error of time-averaged estimates of climatic means. J. Appl. Meteor., 12, 10661069, doi:10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2017: Stably stratified flow in a shallow valley. Bound.-Layer Meteor., 162, 120, doi:10.1007/s10546-016-0191-4.

  • Mahrt, L., and R. C. Heald, 2015: Marginal cold pools. J. Appl. Meteor. Climatol., 54, 339351, doi:10.1175/JAMC-D-14-0204.1.

  • Mahrt, L., and C. K. Thomas, 2016: Surface stress with non-stationary weak winds and stable stratification. Bound.-Layer Meteor., 159, 321, doi:10.1007/s10546-015-0111-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E., and G. G. Katul, 2009: Turbulent pressure and velocity perturbations induced by gentle hills covered with sparse and dense canopies. Bound.-Layer Meteor., 133, 189217, doi:10.1007/s10546-009-9427-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and D. Zardi, 2007: On the boundary-layer structure over highly complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133, 937948, doi:10.1002/qj.71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and M. Lehner, 2016: Two-layer stratified flow past a valley. J. Atmos. Sci., 73, 40654076, doi:10.1175/JAS-D-16-0132.1.

  • Savage, L. C., S. Zhong, W. Yao, W. Brown, T. W. Horst, and C. D. Whiteman, 2008: An observational and numerical study of a regional-scale downslope flow in northern Arizona. J. Geophys. Res., 113, D14114, doi:10.1029/2007JD009623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, P. F., S. B. Vosper, and A. R. Brown, 2014: Characteristics of cold pools observed in narrow valleys and dependence on external conditions. Quart. J. Roy. Meteor. Soc., 140, 715728, doi:10.1002/qj.2159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steeneveld, G., A. Holtslag, C. Nappo, B. van de Weil, and L. Mahrt, 2008: Exploring the possible role of small-scale terrain drag on stable boundary layers over land. J. Appl. Meteor. Climatol., 47, 25182530, doi:10.1175/2008JAMC1816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stiperski, I., and M. W. Rotach, 2016: On the measurement of turbulence over complex mountainous terrain. Bound.-Layer Meteor., 159, 97121, doi:10.1007/s10546-015-0103-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., 2007: Tilt corrections over complex terrain and their implication for CO2 transport. Bound.-Layer Meteor., 124, 143159, doi:10.1007/s10546-007-9186-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vosper, S., and A. Brown, 2008: Numerical simulations of sheltering in valleys: The formation of nighttime cold-air pools. Bound.-Layer Meteor., 127, 429448, doi:10.1007/s10546-008-9272-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vosper, S., J. K. Hughes, A. P. Lock, P. F. Sheridan, A. N. Ross, B. Jemmett-Smith, and A. Brown, 2013: Cold-pool formation in a narrow valley. Quart. J. Roy. Meteor. Soc., 127, 429448, doi:10.1002/qj.2160.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. W. Hoch, M. Lehner, and T. Haiden, 2010: Nocturnal cold-air intrusions into a closed basin: Observational evidence and conceptual model. J. Appl. Meteor. Climatol., 49, 18941905, doi:10.1175/2010JAMC2470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J., S. Oncley, and S. A. Sage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150, doi:10.1023/A:1018966204465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. International Geophysics Series, Vol. 100, Academic Press, 627 pp.

  • Zilitinkevich, S., T. Elperin, N. Kleeorin, V. L’vov, and I. Rogachevskii, 2009: Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: The role of internal gravity waves. Bound.-Layer Meteor., 133, 139164, doi:10.1007/s10546-009-9424-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 221 118 6
PDF Downloads 87 14 3