The Impact of Dimensionality on Barotropic Processes during KWAJEX

Huiyan Xu Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Search for other papers by Huiyan Xu in
Current site
Google Scholar
PubMed
Close
and
Xiaofan Li Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Search for other papers by Xiaofan Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the 2D and 3D cloud-resolving model simulations of the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) are compared to study the impact of dimensionality on barotropic processes during tropical convective development. Barotropic conversion of perturbation kinetic energy is associated with vertical transport of horizontal momentum under vertical shear of background horizontal winds. The similarities in both 2D and 3D model simulations show that 1) vertical wind shear is a necessary condition for barotropic conversion, but it does not control the barotropic conversion; 2) the evolution of barotropic conversion is related to that of the vertical transport of horizontal momentum; and 3) the tendency of vertical transport of horizontal momentum is mainly determined by the covariance between horizontal wind and the cloud hydrometeor component of buoyancy. The differences between the 2D and 3D model simulations reveal that 1) the barotropic conversion has shorter time scales and a larger contribution in the 2D model simulation than in the 3D model simulation and 2) kinetic energy is generally converted from the mean circulations to perturbation circulations in the 3D model simulation. In contrast, more kinetic energy is transferred from perturbation circulations to the mean circulations in the 2D model simulation. The same large-scale vertical velocity may account for the similarities, whereas the inclusion of meridional winds in the 3D model simulation may be responsible for the differences in barotropic conversion between the 2D and 3D model simulations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: X. Li, xiaofanli@zju.edu.cn

Abstract

In this study, the 2D and 3D cloud-resolving model simulations of the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) are compared to study the impact of dimensionality on barotropic processes during tropical convective development. Barotropic conversion of perturbation kinetic energy is associated with vertical transport of horizontal momentum under vertical shear of background horizontal winds. The similarities in both 2D and 3D model simulations show that 1) vertical wind shear is a necessary condition for barotropic conversion, but it does not control the barotropic conversion; 2) the evolution of barotropic conversion is related to that of the vertical transport of horizontal momentum; and 3) the tendency of vertical transport of horizontal momentum is mainly determined by the covariance between horizontal wind and the cloud hydrometeor component of buoyancy. The differences between the 2D and 3D model simulations reveal that 1) the barotropic conversion has shorter time scales and a larger contribution in the 2D model simulation than in the 3D model simulation and 2) kinetic energy is generally converted from the mean circulations to perturbation circulations in the 3D model simulation. In contrast, more kinetic energy is transferred from perturbation circulations to the mean circulations in the 2D model simulation. The same large-scale vertical velocity may account for the similarities, whereas the inclusion of meridional winds in the 3D model simulation may be responsible for the differences in barotropic conversion between the 2D and 3D model simulations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: X. Li, xiaofanli@zju.edu.cn
Save
  • Barnes, E. A., and D. W. Thompson, 2014: Comparing the roles of barotropic versus baroclinic feedbacks in the atmosphere’s response to mechanical forcing. J. Atmos. Sci., 71, 177194, doi:10.1175/JAS-D-13-070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, doi:10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp. [Available from NASA/Goddard Space Flight Center, Code 913, Greenbelt, MD 20771.]

  • Chou, M., D. P. Kratz, and W. Ridgway, 1991: Infrared radiation parameterizations in numerical climate models. J. Climate, 4, 424437, doi:10.1175/1520-0442(1991)004<0424:IRPINC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M., M. J. Suarez, C. Ho, M. M. Yan, and K. Lee, 1998: Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Climate, 11, 202214, doi:10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., 2007: A three-dimensional dynamic vorticity vector associated with tropical oceanic convection. J. Geophys. Res., 112, D18109, doi:10.1029/2006JD008247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., F. Ping, X. Li, and W. K. Tao, 2004: A convective vorticity vector associated with tropical convection: A two-dimensional cloud-resolving modeling study. J. Geophys. Res., 109, D14106, doi:10.1029/2004JD004807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., X. Cui, Y. Zhou, X. Li, and W. K. Tao, 2005: A modeling study of moist and dynamic vorticity vectors associated with two-dimensional tropical convection. J. Geophys. Res., 110, D17104, doi:10.1029/2004JD005675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., X. Li, W.-K. Tao, C.-L. Shie, and S. Lang, 2007: Convective and moist vorticity vectors associated with tropical oceanic convection: A three-dimensional cloud-resolving simulation. J. Geophys. Res., 112, D01105, doi:10.1029/2006JD007179.

    • Search Google Scholar
    • Export Citation
  • George, L., and S. K. Mishra, 1993: An observational study on the energetics of the onset monsoon vortex, 1979. Quart. J. Roy. Meteor. Soc., 119, 755778, doi:10.1002/qj.49711951208.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 32643282, doi:10.1175/1520-0469(1998)055<3264:CRMOCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S., W. K. Tao, J. Simpson, R. Cifelli, S. Rutledge, W. Olson, and J. Halverson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164, doi:10.1175/JAS3879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., 2000: Barotropic effects on atmospheric storm tracks. J. Atmos. Sci., 57, 14201435, doi:10.1175/1520-0469(2000)057<1420:BEOAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., and X. Li, 2016a: Barotropic and baroclinic processes associated with convective development in the tropical deep convective regime. Dyn. Atmos. Oceans, 74, 5059, doi:10.1016/j.dynatmoce.2016.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., and X. Li, 2016b: Barotropic processes associated with the development of the Mei-yu precipitation system. Adv. Atmos. Sci., 33, 593598, doi:10.1007/s00376-015-5146-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., C.-H. Sui, and K.-M. Lau, 2002: Interactions between tropical convection and its environment: An energetics analysis of a 2D cloud resolving simulation. J. Atmos. Sci., 59, 17121722, doi:10.1175/1520-0469(2002)059<1712:IBTCAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., E. J. Zipser, S. K. Krueger, and M. A. Zulauf, 2008: Cloud-resolving modeling of deep convection during KWAJEX. Part I: Comparison to TRMM satellite and ground-based radar observations. Mon. Wea. Rev., 136, 26992712, doi:10.1175/2007MWR2258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J., and G. Wu, 2011: Barotropic process contributing to the formation and growth of tropical cyclone Nargis. Adv. Atmos. Sci., 28, 483491, doi:10.1007/s00376-010-9190-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., X. Zeng, W. Tao, H. Masunaga, W. S. Olson, and S. Lang, 2009: Evaluation of long-term cloud-resolving model simulations using satellite radiance observations and multifrequency satellite simulators. J. Atmos. Oceanic Technol., 26, 12611274, doi:10.1175/2008JTECHA1168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and I. M. Held, 2002: Entropy budget of an atmosphere in radiative-convective equilibrium. Part I: Maximum work and frictional dissipation. J. Atmos. Sci., 59, 125139, doi:10.1175/1520-0469(2002)059<0125:EBOAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Petch, J. C., P. N. Blossey, and C. S. Bretherton, 2008: Differences in the lower troposphere in two- three-dimensional cloud-resolving model simulations of deep convection. Quart. J. Roy. Meteor. Soc., 134, 19411946, doi:10.1002/qj.315.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077, doi:10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, doi:10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robe, F. R., and K. A. Emanuel, 2001: The effect of vertical wind shear on radiative-convective equilibrium states. J. Atmos. Sci., 58, 14271445, doi:10.1175/1520-0469(2001)058<1427:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and R. S. Lindzen, 1976: A discussion of the parameterization of momentum exchange by cumulus convection. J. Geophys. Res., 81, 31583160, doi:10.1029/JC081i018p03158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., Y. Wang, and X. Li, 2011: Effects of vertical wind shear and cloud radiative processes on responses of rainfall to the large-scale forcing during pre-summer heavy rainfall over southern China. Quart. J. Roy. Meteor. Soc., 137, 236249, doi:10.1002/qj.735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shie, C.-L., W.-K. Tao, and J. Simpson, 2003: Simulated KWAJEX convective systems using a 2D and 3D cloud resolving model and their comparisons with radar observations. 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., P3A.13. [Available online at https://ams.confex.com/ams/32BC31R5C/webprogram/Paper64020.html.]

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132, 422444, doi:10.1175/1520-0493(2004)132<0422:LMADCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soong, S., and Y. Ogura, 1980: Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37, 20352050, doi:10.1175/1520-0469(1980)037<2035:ROTCTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soong, S., and W. K. Tao, 1980: Response of deep tropical cumulus clouds to mesoscale processes. J. Atmos. Sci., 37, 20162034, doi:10.1175/1520-0469(1980)037<2016:RODTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soong, S., and W. K. Tao, 1984: A numerical study of the vertical transport of momentum in a tropical rainband. J. Atmos. Sci., 41, 10491061, doi:10.1175/1520-0469(1984)041<1049:ANSOTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., V. D. H. Susan, and L. Pakula, 2008: Radiative-convective feedbacks in idealized states of radiative-convective equilibrium. J. Atmos. Sci., 65, 38993916, doi:10.1175/2008JAS2524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C. H., X. Li, M. Yang, and H. Huang, 2005: Estimation of oceanic precipitation efficiency in cloud models. J. Atmos. Sci., 62, 43584370, doi:10.1175/JAS3587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C. H., C. T. Tsay, and X. Li, 2007: Convective–stratiform rainfall separation by cloud content. J. Geophys. Res., 112, D14213, doi:10.1029/2006JD008082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., and S. Soong, 1986: A study of the response of deep tropical clouds to mesoscale processes: Three-dimensional numerical experiments. J. Atmos. Sci., 43, 26532676, doi:10.1175/1520-0469(1986)043<2653:ASOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 3572, doi:10.3319/TAO.1993.4.1.35(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., J. Simpson, and S. Soong, 1987: Statistical properties of a cloud ensemble: A numerical study. J. Atmos. Sci., 44, 31753187, doi:10.1175/1520-0469(1987)044<3175:SPOACE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueno, M., 2007: Observational analysis and numerical evaluation of the effects of vertical wind shear on the rainfall asymmetry in the typhoon inner-core region. J. Meteor. Soc. Japan, 85, 115136, doi:10.2151/jmsj.85.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., X. Li, W. Tao, and Y. Wang, 2009: Effects of vertical wind shear on convective development during a landfall of severe tropical storm Bilis (2006). Atmos. Res., 94, 270275, doi:10.1016/j.atmosres.2009.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. J. Atmos. Sci., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660, doi:10.1175/1520-0469(1994)051<1640:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K. M., and Coauthors, 2002: An intercomparison of cloud-resolving models with the Atmospheric Radiation Measurement summer 1997 intensive observation period data. Quart. J. Roy. Meteor. Soc., 128, 593624, doi:10.1256/003590002321042117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., R. A. Houze Jr., E. A. Smith, T. T. Wilheit, and E. Zipser, 2005: Physical characterization of tropical oceanic convection observed in KWAJEX. J. Appl. Meteor., 44, 385415, doi:10.1175/JAM2206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., and Coauthors, 2007: Evaluating clouds in long-term cloud-resolving model simulations with observational data. J. Atmos. Sci., 64, 41534177, doi:10.1175/2007JAS2170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., W. Tao, S. Lang, A. Y. Hou, M. Zhang, and J. Simpson, 2008: On the sensitivity of atmospheric ensembles to cloud microphysics in long-term cloud-resolving model simulations. J. Meteor. Soc. Japan, 86A, 4565, doi:10.2151/jmsj.86A.45.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 46 6
PDF Downloads 83 22 1