The Subtropical Stratocumulus-Topped Planetary Boundary Layer: A Climatology and the Lagrangian Evolution

Ryan Eastman Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Ryan Eastman in
Current site
Google Scholar
PubMed
Close
,
Robert Wood Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert Wood in
Current site
Google Scholar
PubMed
Close
, and
Kuan Ting O Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Kuan Ting O in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Prior work has shown that deeper planetary boundary layers (PBLs) are associated with cloud breakup and reduced droplet concentration in subtropical stratocumulus cloud decks, motivating a need for a thorough understanding of PBL mechanics. Here, 169 000 boundary layer trajectories are calculated in four eastern subtropical ocean basins following reanalysis winds at 925 mb (1 mb = 1 hPa). These trajectories combined with a twice-daily cloud-top-height-inferred PBL depth product allow for a comprehensive Lagrangian analysis of the stratocumulus (Sc)-topped PBL as the cloud deck transitions from Sc to trade cumulus (Cu). Month-to-month variations of this PBL product are strongly positively correlated with an independent PBL product derived from GPS radio occultation.

A climatology shows the PBL deepening offshore in every region. The yearly cycle of PBL depth varies in opposition to the yearly cycle of lower-tropospheric stability (LTS), but high-frequency variation between LTS and PBL depth is more complex. Observed geographical patterns of Lagrangian PBL deepening rates appear nonuniform between and within study regions, with smaller regions of maximum deepening rates. A Lagrangian analysis suggests that many variables act to alter the PBL: increased sea surface temperature and droplet concentration act to deepen the PBL, while increases in upper-level humidity, LTS, precipitation, upper-level temperature, and subsidence lead to PBL shallowing.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan Eastman, rmeast@atmos.washington.edu

Abstract

Prior work has shown that deeper planetary boundary layers (PBLs) are associated with cloud breakup and reduced droplet concentration in subtropical stratocumulus cloud decks, motivating a need for a thorough understanding of PBL mechanics. Here, 169 000 boundary layer trajectories are calculated in four eastern subtropical ocean basins following reanalysis winds at 925 mb (1 mb = 1 hPa). These trajectories combined with a twice-daily cloud-top-height-inferred PBL depth product allow for a comprehensive Lagrangian analysis of the stratocumulus (Sc)-topped PBL as the cloud deck transitions from Sc to trade cumulus (Cu). Month-to-month variations of this PBL product are strongly positively correlated with an independent PBL product derived from GPS radio occultation.

A climatology shows the PBL deepening offshore in every region. The yearly cycle of PBL depth varies in opposition to the yearly cycle of lower-tropospheric stability (LTS), but high-frequency variation between LTS and PBL depth is more complex. Observed geographical patterns of Lagrangian PBL deepening rates appear nonuniform between and within study regions, with smaller regions of maximum deepening rates. A Lagrangian analysis suggests that many variables act to alter the PBL: increased sea surface temperature and droplet concentration act to deepen the PBL, while increases in upper-level humidity, LTS, precipitation, upper-level temperature, and subsidence lead to PBL shallowing.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan Eastman, rmeast@atmos.washington.edu
Save
  • Albrecht, B. A., A. K. Betts, W. H. Schubert, and S. K. Cox, 1979: Model of the thermodynamic structure of the trade-wind boundary layer: Part I. Theoretical formulation and sensitivity tests. J. Atmos. Sci., 36, 7389, doi:10.1175/1520-0469(1979)036<0073:MOTTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., J. E. Hare, C. W. Fairall, D. E. Wolfe, R. J. Hill, W. A. Brewer, and A. B. White, 2006: Structure and formation of the highly stable marine boundary layer over the Gulf of Maine. J. Geophys. Res., 111, D23S22, doi:10.1029/2006JD007465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, C. O., G. A. Hajj, T. K. Meehan, D. Dong, B. A. Iijima, and A. J. Mannucci, 2009: Rising and setting GPS occultations by use of open-loop tracking. J. Geophys. Res., 114, D04101, doi:10.1029/2008JD010483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and W. Ridgeway, 1989: Climatic equilibrium of the atmospheric convective boundary layer over the tropical ocean. J. Atmos. Sci., 46, 26212640, doi:10.1175/1520-0469(1989)046<2621:CEOTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, doi:10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34, L03813, doi:10.1029/2006GL027648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., R. Wood, R. C. George, D. Leon, G. Allen, and X. Zheng, 2010: Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20°S during VOCALS-REx. Atmos. Chem. Phys., 10, 10 63910 654, doi:10.5194/acp-10-10639-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. M., and R. Wood, 2013: The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data. J. Geophys. Res. Atmos., 118, 12 42212 434, doi:10.1002/2013JD020147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Roode, S. R., and Coauthors, 2016: Large-eddy simulations of EUCLIPSE–GASS Lagrangian stratocumulus-to-cumulus transitions: Mean state, turbulence, and decoupling. J. Atmos. Sci., 73, 24852508, doi:10.1175/JAS-D-15-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolinar, E. K., X. Dong, and B. Xi, 2016: Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations. Climate Dyn., 46, 21232144, doi:10.1007/s00382-015-2693-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., and R. Wood, 2016: Factors controlling low-cloud evolution over the eastern subtropical oceans: A Lagrangian perspective using the A-Train satellites. J. Atmos. Sci., 73, 331351, doi:10.1175/JAS-D-15-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., R. Wood, and C. S. Bretherton, 2016: Time scales of clouds and cloud-controlling variables in subtropical stratocumulus from a Lagrangian perspective. J. Atmos. Sci., 73, 30793091, doi:10.1175/JAS-D-16-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., A. S. Frisch, B. Stevens, and W. R. Cotton, 1999: On the relationship among cloud turbulence, droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar. J. Geophys. Res., 104, 22 19522 203, doi:10.1029/1999JD900482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1990: The internal boundary layer—A review. Bound.-Layer Meteor., 50, 171203, doi:10.1007/BF00120524.

  • Guo, P., Y.-H. Kuo, S. V. Sokolovskiy, and D. H. Lenschow, 2011: Estimating atmospheric boundary layer depth using COSMIC radio occultation data. J. Atmos. Sci., 68, 17031713, doi:10.1175/2011JAS3612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubanks, P. A., M. D. King, S. Platnick, and R. Pincus, 2008: MODIS atmosphere L3 gridded product algorithm theoretical basis document. MODIS Tech. Doc. ATBD-MOD-30, 96 pp. [Available online at http://modis-atmos.gsfc.nasa.gov/_docs/L3_ATBD_2008_12_04.pdf.]

  • Jones, C. R., C. S. Bretherton, and D. Leon, 2011: Coupled vs. decoupled boundary layers in VOCALS-Rex. Atmos. Chem. Phys., 11, 71437153, doi:10.5194/acp-11-7143-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, S. Cardoso, J. Teixeira, and S. Paradise, 2010: Subtropical cloud-regime transitions: Boundary layer depth and cloud-top height evolution in models and observations. J. Appl. Meteor. Climatol., 49, 18451858, doi:10.1175/2010JAMC2338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity. IEEE Trans. Geosci. Remote Sens., 41, 442458, doi:10.1109/TGRS.2002.808226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., and W. J. Martin, 1994: Parameterization of bulk condensation in numerical cloud models. J. Atmos. Sci., 51, 17281739, doi:10.1175/1520-0469(1994)051<1728:POBCIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part I: Boundary layer structure. J. Atmos. Sci., 52, 28392850, doi:10.1175/1520-0469(1995)052<2839:NSOTST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and T. S. L’Ecuyer, 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, doi:10.1029/2011JD016076.

  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, doi:10.1002/qj.49709440106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, T., Z. Wang, D. Zhang, and B. Chen, 2016: Marine boundary layer structure as observed by A-Train satellites. Atmos. Chem. Phys., 16, 58915903, doi:10.5194/acp-16-5891-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddux, B. C., S. A. Ackerman, and S. Platnick, 2010: Viewing geometry dependencies in MODIS cloud products. J. Atmos. Oceanic Technol., 27, 15191528, doi:10.1175/2010JTECHA1432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauger, G. S., and J. R. Norris, 2010: Assessing the impact of meteorological history on subtropical cloud fraction. J. Climate, 23, 29262940, doi:10.1175/2010JCLI3272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messager, C., and S. Swart, 2016: Significant atmospheric boundary layer change observed above an Agulhas Current warm cored eddy. Adv. Meteor., 2016, 3659657, doi:10.1155/2016/3659657.

    • Crossref
    • Export Citation
  • Myers, T. A., and J. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 75057524, doi:10.1175/JCLI-D-12-00736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1989: The structure of radiatively driven convection in stratocumulus. Quart. J. Roy. Meteor. Soc., 115, 487511, doi:10.1002/qj.49711548704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., 2005: The impact of subsampling on MODIS level-3 statistics of cloud optical thickness and effective radius. IEEE Trans. Geosci. Remote Sens., 43, 366373, doi:10.1109/TGRS.2004.841247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D., P. Minnis, and L. O’Neill, 2013: The diurnal cycle of cloud-top height and cloud cover over the southeastern Pacific as observed by GOES-10. J. Atmos. Sci., 70, 23932408, doi:10.1175/JAS-D-12-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48, 21412158, doi:10.1175/1520-0469(1991)048<2141:SCFITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., M. B. Baker, and C. S. Bretherton, 1997: What controls stratocumulus radiative properties? Lagrangian observations of cloud evolution. J. Atmos. Sci., 54, 22152236, doi:10.1175/1520-0469(1997)054<2215:WCSRPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., J. A. Croakley Jr., C. W. Fairall, R. A. Kropfli, and D. H. Lenschow, 1984: Outlook for research on subtropical marine stratiform clouds. Bull. Amer. Meteor. Soc., 65, 12901301, doi:10.1175/1520-0477(1984)065<1290:OFROSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandu, I., and B. Stevens, 2011: On the factors modulating the stratocumulus to cumulus transitions. J. Atmos. Sci., 68, 18651881, doi:10.1175/2011JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandu, I., B. Stevens, and R. Pincus, 2010: On the transitions in marine boundary layer cloudiness. Atmos. Chem. Phys., 10, 23772391, doi:10.5194/acp-10-2377-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C.-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638, doi:10.1175/1520-0469(1998)055<3616:LESOSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svensson, G., M. Tjernström, and D. Koračin, 2000: The sensitivity of a stratocumulus transition: Model simulations of the ASTEX first Lagrangian. Bound.-Layer Meteor., 95, 5790, doi:10.1023/A:1002434314651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Dussen, J. J., S. R. de Roode, and A. P. Siebesma, 2014: Factors controlling rapid stratocumulus cloud thinning. J. Atmos. Sci., 71, 655664, doi:10.1175/JAS-D-13-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, M., S. Young, D. Winker, K. Powell, A. Omar, Z. Liu, Y. Hu, and C. Hostetler, 2004: Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Laser Radar Techniques for Atmospheric Sensing, U. N. Singh, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5575), 16, doi:10.1117/12.572024.

    • Crossref
    • Export Citation
  • Vogel, R., L. Nuijens, and B. Stevens, 2016: The role of precipitation and spatial organization in the response of trade-wind clouds to warming. J. Adv. Model. Earth Syst., 8, 843862, doi:10.1002/2015MS000568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von Engeln, A., and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, doi:10.1175/JCLI-D-12-00385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., R. Eastman, and C. J. Hahn, 2007: A survey of changes in cloud cover and cloud types over land from surface observations, 1971–1996. J. Climate, 20, 717738, doi:10.1175/JCLI4031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and T. Meissner, 2004: AMSR-E/Aqua L2B global swath ocean products derived from Wentz algorithm, version 2. National Snow and Ice Data Center, accessed 13 May 2016, doi:10.5067/AMSR-E/AE_OCEAN.002.

    • Crossref
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17, 35763588, doi:10.1175/1520-0442(2004)017<3576:BLDEAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54, 168192, doi:10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., P. Kollias, and E. R. Lewis, 2015: Clouds, precipitation, and marine boundary layer structure during the MAGIC field campaign. J. Climate, 28, 24202442, doi:10.1175/JCLI-D-14-00320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., D. Painemal, S. de Szoeke, and C. Fairall, 2009: Stratocumulus cloud-top estimates and their climatic implications. J. Climate, 22, 46524666, doi:10.1175/2009JCLI2708.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 462 126 15
PDF Downloads 354 98 6