The Semiannual Oscillation of the Tropical Zonal Wind in the Middle Atmosphere Derived from Satellite Geopotential Height Retrievals

Anne K. Smith Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Anne K. Smith in
Current site
Google Scholar
PubMed
Close
,
Rolando R. Garcia Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Rolando R. Garcia in
Current site
Google Scholar
PubMed
Close
,
Andrew C. Moss Centre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, United Kingdom

Search for other papers by Andrew C. Moss in
Current site
Google Scholar
PubMed
Close
, and
Nicholas J. Mitchell Centre for Space, Atmospheric and Oceanic Science, University of Bath, Bath, United Kingdom

Search for other papers by Nicholas J. Mitchell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dominant mode of seasonal variability in the global tropical upper-stratosphere and mesosphere zonal wind is the semiannual oscillation (SAO). However, it is notoriously difficult to measure winds at these heights from satellite or ground-based remote sensing. Here, the balance wind relationship is used to derive monthly and zonally averaged zonal winds in the tropics from satellite retrievals of geopotential height. Data from the Aura Microwave Limb Sounder (MLS) cover about 12.5 yr, and those from the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) cover almost 15 yr. The derived winds agree with direct wind observations below 10 hPa and above 80 km; there are no direct wind observations for validation in the intervening layers of the middle atmosphere. The derived winds show the following prominent peaks associated with the SAO: easterly maxima near the solstices at 1.0 hPa, westerly maxima near the equinoxes at 0.1 hPa, and easterly maxima near the equinoxes at 0.01 hPa. The magnitudes of these three wind maxima are stronger during the first cycle (January at 1.0 hPa and March at 0.1 and 0.01 hPa). The month and pressure level of the wind maxima shift depending on the phase of the quasi-biennial oscillation (QBO) at 10 hPa. During easterly QBO, the westerly maxima are shifted upward, are about 10 m s−1 stronger, and occur approximately 1 month later than those during the westerly QBO phase.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anne K. Smith, aksmith@ucar.edu

Abstract

The dominant mode of seasonal variability in the global tropical upper-stratosphere and mesosphere zonal wind is the semiannual oscillation (SAO). However, it is notoriously difficult to measure winds at these heights from satellite or ground-based remote sensing. Here, the balance wind relationship is used to derive monthly and zonally averaged zonal winds in the tropics from satellite retrievals of geopotential height. Data from the Aura Microwave Limb Sounder (MLS) cover about 12.5 yr, and those from the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) cover almost 15 yr. The derived winds agree with direct wind observations below 10 hPa and above 80 km; there are no direct wind observations for validation in the intervening layers of the middle atmosphere. The derived winds show the following prominent peaks associated with the SAO: easterly maxima near the solstices at 1.0 hPa, westerly maxima near the equinoxes at 0.1 hPa, and easterly maxima near the equinoxes at 0.01 hPa. The magnitudes of these three wind maxima are stronger during the first cycle (January at 1.0 hPa and March at 0.1 and 0.01 hPa). The month and pressure level of the wind maxima shift depending on the phase of the quasi-biennial oscillation (QBO) at 10 hPa. During easterly QBO, the westerly maxima are shifted upward, are about 10 m s−1 stronger, and occur approximately 1 month later than those during the westerly QBO phase.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anne K. Smith, aksmith@ucar.edu
Save
  • Baldwin, M. P., and L. J. Gray, 2005: Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data. Geophys. Res. Lett., 32, L09806, doi:10.1029/2004GL022328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrage, M. D., M. E. Hagan, W. R. Skinner, D. L. Wu, and P. B. Hays, 1995a: Long-term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM. Geophys. Res. Lett., 22, 26412644, doi:10.1029/95GL02635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrage, M. D., D. L. Wu, W. R. Skinner, D. A. Ortland, and P. B. Hays, 1995b: Latitude and seasonal dependence of the semidiurnal tide observed by the high-resolution Doppler imager. J. Geophys. Res., 100, 11 31311 321, doi:10.1029/95JD00696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrage, M. D., R. A. Vincent, H. G. Mayr, W. R. Skinner, N. F. Arnold, and P. B. Hays, 1996: Long-term variability in the equatorial middle atmosphere zonal wind. J. Geophys. Res., 101, 12 84712 854, doi:10.1029/96JD00575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coy, L., K. Wargan, A. M. Molod, W. R. McCarty, and S. Pawson, 2016: Structure and dynamics of the quasi-biennial oscillation in MERRA-2. J. Climate, 29, 53395354, doi:10.1175/JCLI-D-15-0809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. N., J. Du, A. K. Smith, W. E. Ward, and N. J. Mitchell, 2013: The diurnal and semidiurnal tides over Ascension Island (8°S, 14°W) and their interaction with the stratospheric QBO: Studies with meteor radar, eCMAM and WACCM. Atmos. Chem. Phys., 13, 95439564, doi:10.5194/acp-13-9543-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Wit, R. J., R. E. Hibbins, P. J. Espy, and N. J. Mitchell, 2013: Interannual variability of mesopause zonal winds over Ascension Island: Coupling to the stratospheric QBO. J. Geophys. Res. Atmos., 118, 12 05212 060, doi:10.1002/2013JD020203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1982: Theory of the mesopause semiannual oscillation. J. Atmos. Sci., 39, 26812690, doi:10.1175/1520-0469(1982)039<2681:TOTMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and F. Sassi, 1999: Modulation of the mesospheric semiannual oscillation by the quasibiennial oscillation. Earth Planets Space, 51, 563569, doi:10.1186/BF03353215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., T. J. Dunkerton, R. S. Lieberman, and R. A. Vincent, 1997: Climatology of the semiannual oscillation of the tropical middle atmosphere. J. Geophys. Res., 102, 26 01926 032, doi:10.1029/97JD00207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., A. Hertzog, F. Vial, and G. Stenchikov, 2004: Longitudinal variation of the stratospheric quasi-biennial oscillation. J. Atmos. Sci., 61, 383402, doi:10.1175/1520-0469(2004)061<0383:LVOTSQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, I., 1980: Observational evidence of the semiannual oscillation in the tropical middle atmosphere—A review. Pure Appl. Geophys., 118, 217238, doi:10.1007/BF01586452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and W. M. Wehrbein, 1980: A numerical model of the zonal mean circulation of the middle atmosphere. Pure Appl. Geophys., 118, 284306, doi:10.1007/BF01586455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, R. H., 1975: Evidence of polar–tropical coupling in upper stratospheric zonal wind anomalies. J. Atmos. Sci., 32, 712719, doi:10.1175/1520-0469(1975)032<0712:EOPTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., K. Hamilton, K. Miyazaki, M. Fujiwara, and J. A. Anstey, 2016: Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses. Atmos. Chem. Phys., 16, 66816699, doi:10.5194/acp-16-6681-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2017: Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) Version 4.2x Level 2 data quality and description document. JPL Tech. Rep. JPL D-33509 Rev. C, 169 pp. [Available online at https://mls.jpl.nasa.gov/data/v4-2_data_quality_document.pdf.]

  • Moss, A. C., C. J. Wright, R. N. Davis, and N. J. Mitchell, 2016: Gravity-wave momentum fluxes in the mesosphere over Ascension Island (8°S, 14°W) and the anomalous zonal winds of the semi-annual oscillation in 2002. Ann. Geophys., 34, 323330, doi:10.5194/angeo-34-323-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naujokat, B., 1986: An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J. Atmos. Sci., 43, 18731877, doi:10.1175/1520-0469(1986)043<1873:AUOTOQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niciejewski, R., and Coauthors, 2006: TIMED Doppler Interferometer on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite: Data product overview. J. Geophys. Res., 111, A11S90, doi:10.1029/2005JA011513.

    • Search Google Scholar
    • Export Citation
  • Pancheva, D., P. Mukhtarov, and B. Andonov, 2009: Global structure, seasonal and interannual variability of the migrating semidiurnal tide seen in the SABER/TIMED temperatures (2002–2007). Ann. Geophys., 27, 687703, doi:10.5194/angeo-27-687-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña‐Ortiz, C., H. Schmidt, M. A. Giorgetta, and M. Keller, 2010: QBO modulation of the semiannual oscillation in MAECHAM5 and HAMMONIA. J. Geophys. Res., 115, D21106, doi:10.1029/2010JD013898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., 1987: The evaluation of wind from geopotential height data in the stratosphere. J. Atmos. Sci., 44, 30973120, doi:10.1175/1520-0469(1987)044<3097:TEOWFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and Coauthors, 2004: The SPARC intercomparison of middle-atmosphere climatologies. J. Climate, 17, 9861003, doi:10.1175/1520-0442(2004)017<0986:TSIOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, E. A., M. J. Alexander, and J. R. Holton, 1998: An analysis of the structure and forcing of the equatorial semiannual oscillation in zonal wind. J. Geophys. Res., 103, 17591774, doi:10.1029/97JD02679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remsberg, E. E., and Coauthors, 2008: Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J Geophys. Res., 113, D17101, doi:10.1029/2008JD010013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1982a: Sampling theory for asynoptic satellite observations. Part I: Space-time spectra, resolution, and aliasing. J. Atmos. Sci., 39, 25772600, doi:10.1175/1520-0469(1982)039<2577:STFASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1982b: Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic mapping. J. Atmos. Sci., 39, 26012614, doi:10.1175/1520-0469(1982)039<2601:STFASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, M. J., and Coauthors, 2008: Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res., 113, D15S11, doi:10.1029/2007JD008783.

    • Search Google Scholar
    • Export Citation
  • Venkateswara Rao, N., T. Tsuda, D. M. Riggin, S. Gurubaran, I. M. Reid, and R. A. Vincent, 2012: Long-term variability of mean winds in the mesosphere and lower thermosphere at low latitudes. J. Geophys. Res., 117, A10312, doi:10.1029/2012JA017850.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., and Coauthors, 2008: Global distribution and interannual variations of mesospheric and lower thermospheric neutral wind diurnal tide: 1. Migrating tide. J. Geophys. Res., 113, A05308, doi:10.1029/2007JA012542.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1242 344 48
PDF Downloads 1057 245 21