The Modulation of Stationary Waves, and Their Response to Climate Change, by Parameterized Orographic Drag

Annelize van Niekerk Department of Meteorology, University of Reading, Reading, Berkshire, United Kingdom

Search for other papers by Annelize van Niekerk in
Current site
Google Scholar
PubMed
Close
,
John F. Scinocca Canadian Centre for Climate Modelling and Analysis, Victoria, British Columbia, Canada

Search for other papers by John F. Scinocca in
Current site
Google Scholar
PubMed
Close
, and
Theodore G. Shepherd Department of Meteorology, University of Reading, Reading, Berkshire, United Kingdom

Search for other papers by Theodore G. Shepherd in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The parameterization of orographic drag processes in atmospheric models remains uncertain because of a lack of observational and theoretical constraints on their formulation and free parameters. While previous studies have demonstrated that parameterized orographic drag acting near the surface has a significant impact on the atmospheric circulation, this work follows a more systematic approach to investigate its impacts on the large-scale circulation and the circulation response to climate change. A set of experiments with a comprehensive atmospheric general circulation model is used to ascertain the range of climatological circulations that may arise from parameter uncertainty. It is found that the Northern Hemisphere (NH) wintertime stationary wave field is strongly damped over the North Pacific (NP) and amplified over the North Atlantic (NA) as a result of increased low-level parameterized orographic drag, both of which are shown to be conducive to higher-latitude westerlies. A comparison with the stationary wave field presented in other studies suggests that the too-zonal NA jet and equatorward NP jet biases that are prevalent in climate models may be at least partly due to their representation of orographic drag. The amplitude of the stationary wave response to climate change across the experiments is shown to scale with the magnitude of low-level parameterized orographic drag through its influence on the present-day climatological stationary wave amplitudes over different sectors of the NH, which is consistent with linear stationary wave theory. This work highlights the importance of fidelity in a model’s basic state for regional climate change projections.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Annelize van Niekerk, annelize.vanniekerk@metoffice.gov.uk

Abstract

The parameterization of orographic drag processes in atmospheric models remains uncertain because of a lack of observational and theoretical constraints on their formulation and free parameters. While previous studies have demonstrated that parameterized orographic drag acting near the surface has a significant impact on the atmospheric circulation, this work follows a more systematic approach to investigate its impacts on the large-scale circulation and the circulation response to climate change. A set of experiments with a comprehensive atmospheric general circulation model is used to ascertain the range of climatological circulations that may arise from parameter uncertainty. It is found that the Northern Hemisphere (NH) wintertime stationary wave field is strongly damped over the North Pacific (NP) and amplified over the North Atlantic (NA) as a result of increased low-level parameterized orographic drag, both of which are shown to be conducive to higher-latitude westerlies. A comparison with the stationary wave field presented in other studies suggests that the too-zonal NA jet and equatorward NP jet biases that are prevalent in climate models may be at least partly due to their representation of orographic drag. The amplitude of the stationary wave response to climate change across the experiments is shown to scale with the magnitude of low-level parameterized orographic drag through its influence on the present-day climatological stationary wave amplitudes over different sectors of the NH, which is consistent with linear stationary wave theory. This work highlights the importance of fidelity in a model’s basic state for regional climate change projections.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Annelize van Niekerk, annelize.vanniekerk@metoffice.gov.uk
Save
  • Barnes, E. A., and D. L. Hartmann, 2010: Testing a theory for the effect of latitude on the persistence of eddy-driven jets using CMIP3 simulations. Geophys. Res. Lett., 37, L15801, doi:10.1029/2010GL044144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., E. Shuckburgh, J. B. Sallee, Z. Wang, A. J. S. Meijers, N. Bruneau, T. Phillips, and L. J. Wilcox, 2013: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos., 118, 547562, doi:10.1002/jgrd.50153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. J. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558, doi:10.1175/2009JAS3078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1949: A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus, 1, 3854, doi:10.3402/tellusa.v1i2.8500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and P. Zurita-Gotor, 2008: The tropospheric jet response to prescribed zonal forcing in an idealized atmospheric model. J. Atmos. Sci., 65, 22542271, doi:10.1175/2007JAS2589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delsole, T., and J. Shukla, 2010: Model fidelity versus skill in seasonal forecasting. J. Climate, 23, 47944806, doi:10.1175/2010JCLI3164.1.

  • DeWeaver, E., and S. Nigam, 2000: Do stationary waves drive the zonal-mean jet anomalies of the northern winter? J. Climate, 13, 21602176, doi:10.1175/1520-0442(2000)013<2160:DSWDTZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golledge, N. R., D. E. Kowalewski, T. R. Naish, R. H. Levy, C. J. Fogwill, and E. G. W. Gasson, 2015: The multi-millennial Antarctic commitment to future sea-level rise. Nature, 526, 421425, doi:10.1038/nature15706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grose, W. L., and B. J. Hoskins, 1979: On the influence of orography on large-scale atmospheric flow. J. Atmos. Sci., 36, 223234, doi:10.1175/1520-0469(1979)036<0223:OTIOOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junge, M. M., R. Blender, K. Fraedrich, V. Gayler, U. Luksch, and F. Lunkeit, 2005: A world without Greenland: Impacts on the Northern Hemisphere winter circulation in low- and high-resolution models. Climate Dyn., 24, 297307, doi:10.1007/s00382-004-0501-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and J. F. Scinocca, 2012: The impact of model fidelity on seasonal predictive skill. Geophys. Res. Lett., 39, L18803, doi:10.1029/2012GL052815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laprise, R., and C. Girard, 1990: A spectral general circulation model using a piecewise-constant finite-element representation on a hybrid vertical coordinate system. J. Climate, 3, 3252, doi:10.1175/1520-0442(1990)003<0032:ASGCMU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429, doi:10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, doi:10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzini, E., and Coauthors, 2014: Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere–troposphere coupling. J. Geophys. Res. Atmos., 119, 79797998, doi:10.1002/2013JD021403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, doi:10.1175/1520-0469(1987)044〈1775:TEOOEG〉2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, S. Polavarapu, and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry climate models? J. Atmos. Sci., 69, 802818, doi:10.1175/JAS-D-11-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., and E. DeWeaver, 2003: Stationary waves (orographic and thermally forced). Encyclopedia of Atmospheric Sciences, 1st ed. Academic Press, 2121–2137.

    • Crossref
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 10011039, doi:10.1002/qj.49711247406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., T. G. Shepherd, G. Zappa, and I. Sandu, 2016: Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys. Res. Lett., 43, 72317240, doi:10.1002/2016GL069551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, doi:10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 3855, doi:10.1357/002224039806649023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandu, I., P. Bechtold, A. Beljaars, A. Bozzo, F. Pithan, T. G. Shepherd, and A. Zadra, 2016: Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation. J. Adv. Model. Earth Syst., 8, 196211, doi:10.1002/2015MS000564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., and N. A. McFarlane, 2000: The parametrization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126, 23532393, doi:10.1002/qj.49712656802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074, doi:10.5194/acp-8-7055-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, doi:10.1038/ngeo2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. F. Scinocca, 2010: The influence of the basic state on the Northern Hemisphere circulation response to climate change. J. Climate, 23, 14341446, doi:10.1175/2009JCLI3167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., and L. M. Polvani, 2016: Revisiting the relationship between jet position, forced response, and annular mode variability in the southern midlatitudes. Geophys. Res. Lett., 43, 28962903, doi:10.1002/2016GL067989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying mid-latitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, doi:10.1175/JAS-D-13-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., R. Seager, M. Ting, and T. A. Shaw, 2016: Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Climate Change, 6, 6570, doi:10.1038/nclimate2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., 1986: Envelope orography and maintenance of the quasi-stationary circulation in the ECMWF global models. Advances in Geophysics, Vol. 29, Academic Press, 339–374, doi:10.1016/S0065-2687(08)60045-X.

    • Crossref
    • Export Citation
  • Ting, M., M. P. Hoerling, T. Xu, and A. Kumar, 1996: Northern Hemisphere teleconnection patterns during extreme phases of the zonal-mean circulation. J. Climate, 9, 26142633, doi:10.1175/1520-0442(1996)009<2614:NHTPDE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Niekerk, A., T. G. Shepherd, S. B. Vosper, and S. Webster, 2016: Sensitivity of resolved and parametrized surface drag to changes in resolution and parametrization. Quart. J. Roy. Meteor. Soc., 142, 23002313, doi:10.1002/qj.2821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and Coauthors, 2013: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125, doi:10.1080/07055900.2012.755610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., 2000: Three-dimensional numerical simulations of strongly stratified flow past conical orography. J. Atmos. Sci., 57, 37163739, doi:10.1175/1520-0469(2000)057<3716:TDNSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and H. Hsu, 1985: Another look at the index cycle. Tellus, 37A, 478486, doi:10.1111/j.1600-0870.1985.tb00445.x.

  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, doi:10.1002/qj.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zadra, A., and Coauthors, 2013: WGNE Drag Project. Accessed 26 June 2017. [Available online at http://collaboration.cmc.ec.gc.ca/science/rpn/drag_project/.]

  • Zappa, G., and T. G. Shepherd, 2017: Storylines of atmospheric circulation change for European regional climate impact assessment. J. Climate, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B. Stephenson, 2013: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Climate, 26, 58465862, doi:10.1175/JCLI-D-12-00573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1031 441 26
PDF Downloads 415 115 4