Aircraft Observations of Cumulus Microphysics Ranging from the Tropics to Midlatitudes: Implications for a “New” Secondary Ice Process

Paul Lawson SPEC Incorporated, Boulder, Colorado

Search for other papers by Paul Lawson in
Current site
Google Scholar
PubMed
Close
,
Colin Gurganus SPEC Incorporated, Boulder, Colorado

Search for other papers by Colin Gurganus in
Current site
Google Scholar
PubMed
Close
,
Sarah Woods SPEC Incorporated, Boulder, Colorado

Search for other papers by Sarah Woods in
Current site
Google Scholar
PubMed
Close
, and
Roelof Bruintjes National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roelof Bruintjes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In situ data collected by three research aircraft in four geographical locations are analyzed to determine the relationship between cloud-base temperature, drop size distribution, and the development of supercooled water drops and ice in strong updraft cores of convective clouds. Data were collected in towering cumulus and feeder cells in the Caribbean, over the Gulf of Mexico, over land near the Gulf Coast, over land in the southeastern United States, and the high plains in Colorado and Wyoming. Convective clouds in the Caribbean, over the Gulf of Mexico and its coast, and over the southeastern United States all develop millimeter-diameter supercooled drops in updraft cores. Clouds over the high plains do not generate supercooled large drops, and rarely are drops >70 μm observed in updraft cores. Commensurate with the production of supercooled large drops, ice is generated and rapidly glaciates updraft cores through a hypothesized secondary ice process that is based on laboratory observations of large drops freezing and emitting tiny ice particles. Clouds over the high plains do not experience the secondary ice process and significant concentrations of supercooled liquid in the form of small drops are carried much higher (up to −35.5°C) in the updraft cores. An empirical relationship that estimates the maximum level to which supercooled liquid water will be transported, based on cloud-base drop size distribution and temperature, is developed. Implications have applications for modeling the transport of water vapor and particles into the upper troposphere and hygroscopic seeding of cumulus clouds.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Paul Lawson, plawson@specinc.com

Abstract

In situ data collected by three research aircraft in four geographical locations are analyzed to determine the relationship between cloud-base temperature, drop size distribution, and the development of supercooled water drops and ice in strong updraft cores of convective clouds. Data were collected in towering cumulus and feeder cells in the Caribbean, over the Gulf of Mexico, over land near the Gulf Coast, over land in the southeastern United States, and the high plains in Colorado and Wyoming. Convective clouds in the Caribbean, over the Gulf of Mexico and its coast, and over the southeastern United States all develop millimeter-diameter supercooled drops in updraft cores. Clouds over the high plains do not generate supercooled large drops, and rarely are drops >70 μm observed in updraft cores. Commensurate with the production of supercooled large drops, ice is generated and rapidly glaciates updraft cores through a hypothesized secondary ice process that is based on laboratory observations of large drops freezing and emitting tiny ice particles. Clouds over the high plains do not experience the secondary ice process and significant concentrations of supercooled liquid in the form of small drops are carried much higher (up to −35.5°C) in the updraft cores. An empirical relationship that estimates the maximum level to which supercooled liquid water will be transported, based on cloud-base drop size distribution and temperature, is developed. Implications have applications for modeling the transport of water vapor and particles into the upper troposphere and hygroscopic seeding of cumulus clouds.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Paul Lawson, plawson@specinc.com
Save
  • Avery, M. A., and Coauthors, 2015: Marine and continental upper tropospheric convective cloud characteristics as observed during SEAC4RS. Proc. SEAC4 RS Science Team Meeting, Pasadena, CA, California Institute of Technology. [Available online at https://espo.nasa.gov/missions/sites/default/files/documents/Tu1400_Avery_v2.pdf.]

  • Baker, B. A., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image to mass relationships. J. Appl. Meteor. Climatol., 45, 12821290, doi:10.1175/JAM2398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., 1999: A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull. Amer. Meteor. Soc., 80, 805820, doi:10.1175/1520-0477(1999)080<0805:AROCSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, Y., D. Montague, W. Mooiweer-Bryan, and T. Deshler, 2008: Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: Laboratory and field studies. J. Aerosol Sci., 39, 759769, doi:10.1016/j.jaerosci.2008.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, T. D., J. E. Dye, and V. Toutenhoofd, 1974: The mechanism of precipitation formation in northeastern Colorado cumulus II. Sailplane measurements. J. Atmos. Sci., 31, 21482151, doi:10.1175/1520-0469(1974)031<2148:TMOPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colon-Robles, M., R. M. Rauber, and J. B. Jensen, 2006: Influence of low level wind speed on droplet spectra near cloud base in trade wind cumulus. Geophys. Res. Lett., 33, L20814, doi:10.1029/2006GL027487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., T. W. Choularton, M. W. Gallagher, K. N. Bower, M. J. Flynn, and J. A. Whiteway, 2006: Cloud-resolving simulations of intense tropical hector thunderstorms: Implications for aerosol–cloud interactions. Quart. J. Roy. Meteor. Soc., 132, 30793106, doi:10.1256/qj.05.86.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., R. P. Lawson, A. Rodi, and T. Cerni, 1982: Cloud physics investigations, University of Wyoming, 1977–1981. University of Wyoming Tech. Rep. 142, 129 pp.

  • Cooper, W. A., R. T. Bruintjes, and G. K. Mather, 1997: Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteor., 36, 14491469, doi:10.1175/1520-0450(1997)036<1449:CPTHSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., S. G. Lasher-Trapp, and A. M. Blyth, 2011: Initiation of coalescence in a cumulus cloud: A beneficial influence of entrainment and mixing. Atmos. Chem. Phys. Discuss., 11, 10 55710 613, doi:10.5194/acpd-11-10557-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dye, J. E., C. A. Knight, V. Toutenhoofd, and T. W. Cannon, 1974: The mechanism of precipitation formation in northeastern Colorado cumulus III. Coordinated microphysical and radar observations and summary. J. Atmos. Sci., 31, 21522159, doi:10.1175/1520-0469(1974)031<2152:TMOPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors, 1986: Early electrification and precipitation development in a small, isolated Montana cumulonimbus. J. Geophys. Res., 91, 12311247, doi:10.1029/JD091iD01p01231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAA, 2013: Glider Flying Handbook. FAA Publ. FAA-H-8083-13A, 268 pp.

  • Forster, P. M. D. F., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, 1086, doi:10.1029/2001GL013909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2016: Untangling microphysical impacts on deep convection applying a novel modeling methodology. Part II: Double-moment microphysics. J. Atmos. Sci., 73, 37493770, doi:10.1175/JAS-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

  • Hardiman, S. C., and Coauthors, 2015: Processes controlling tropical tropopause temperature and stratospheric water vapor in climate models. J. Climate, 28, 65166535, doi:10.1175/JCLI-D-15-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. L. Parrish, 1978: A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J. Appl. Meteor., 17, 15661572, doi:10.1175/1520-0450(1978)017<1566:ACTFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and P. Willis, 2014: Cloud conditions favoring secondary ice particle production in tropical maritime convection. J. Atmos. Sci., 71, 45004526, doi:10.1175/JAS-D-14-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. A. Knight, and J. E. Dye, 1979: Ice initiation in unmixed updraft cores in northeast Colorado cumulus congestus clouds. J. Atmos. Sci., 36, 22162229, doi:10.1175/1520-0469(1979)036<2216:IIIUUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 1993: Cloud condensation nuclei near marine cumulus. J. Geophys. Res., 98, 26932702, doi:10.1029/92JD02169.

  • Hudson, J. G., and S. Mishra, 2007: Relationships between CCN and cloud microphysics variations in clean maritime air. Geophys. Res. Lett., 34, L16804, doi:10.1029/2007GL030044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and S. Noble, 2014: Low-altitude summer/winter microphysics, dynamics, and CCN spectra of northeastern Caribbean small cumuli, and comparisons with stratus. J. Geophys. Res. Atmos., 119, 54455463, doi:10.1002/2013JD021442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and P. Squires, 1982: Hailstorms of the Central High Plains. I: The National Hail Research Experiment. Colorado Associated University Press, 282 pp.

  • Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds: Their Formation, Optical Properties, and Effects, P.V. Hobbs and A. Deepak, Eds., Academic Press, 15–91, doi:10.1016/B978-0-12-350720-4.50007-7.

    • Crossref
    • Export Citation
  • Koenig, L. R., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos. Sci., 20, 2947, doi:10.1175/1520-0469(1963)020<0029:TGBOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., 1965: Drop freezing through drop breakup. J. Atmos. Sci., 22, 448451, doi:10.1175/1520-0469(1965)022<0448:DFTDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 2007: Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations. J. Atmos. Oceanic Technol., 24, 376389, doi:10.1175/JTECH1980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, doi:10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauber, A., M. Schätzle, P. Handmann, A. Kiselev, and T. Leisner, 2016: Production of secondary ice particles and splintering of freezing droplets as a potential mechanism of ice multiplication. Proc. Int. Conf. on Clouds and Precipitation, Manchester, United Kingdom. [Available online at https://bwsyncandshare.kit.edu/dl/fiCNioFokGC4zRCLdPongUXD/ICCP_2016_Kiselev.pptx.]

  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381, doi:10.5194/amt-4-1361-2011.

  • Lawson, R. P., R. E. Stewart, and L. J. Angus, 1998: Observations and numerical simulations of the origin and development of very large snowflakes. J. Atmos. Sci., 55, 32093229, doi:10.1175/1520-0469(1998)055<3209:OANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July during FIRE ACE. J. Geophys. Res., 106, 14 98915 014, doi:10.1029/2000JD900789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. A. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, doi:10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., E. Jensen, D. L. Mitchell, B. Baker, Q. Mo, and B. Pilson, 2010: Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J. Geophys. Res., 115, D00J08, doi:10.1029/2009JD013017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, doi:10.1175/JAS-D-14-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leisner, T., T. Pander, P. Handmann, and A. Kiselev, 2014: Secondary ice processes upon heterogeneous freezing of cloud droplets. 14th Conf. on Cloud Physics and Atmospheric Radiation, Boston, MA, Amer. Meteor. Soc., 2.3. [Available online at https://ams.confex.com/ams/14CLOUD14ATRAD/webprogram/Paper250221.html.]

  • Liu, G. S., and J. A. Curry, 1999: Tropical ice water amount and its relations to other atmospheric hydrological parameters as inferred from satellite data. J. Appl. Meteor., 38, 11821194, doi:10.1175/1520-0450(1999)038<1182:TIWAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowenstein, J., A. Blyth, and R. P. Lawson, 2010: Early evolution of the largest-sized droplets in maritime cumulus clouds. Quart. J. Roy. Meteor. Soc., 136, 708717, doi:10.1002/qj.597.

    • Search Google Scholar
    • Export Citation
  • Mather, G. K., D. E. Terblanche, F. E. Steffens, and L. Fletcher, 1997: Results of the South African cloud-seeding experiments using hygroscopic flares. J. Appl. Meteor., 36, 14331447, doi:10.1175/1520-0450(1997)036<1433:ROTSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2010: An improved representation of rimed snow and conversion to graupel in a multicomponent bin microphysics scheme. J. Atmos. Sci., 67, 13371360, doi:10.1175/2010JAS3250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664, doi:10.1175/1520-0469(1988)045<1651:VOTSIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Roberts, G., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol., 39, 206221, doi:10.1080/027868290913988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440442, doi:10.1038/35013030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., and Coauthors, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, P., 1956: The micro-structure of cumuli in maritime and continental air. Tellus, 8, 443444, doi:10.3402/tellusa.v8i4.9040.

  • Squires, P., 1958a: The microstructure and colloidal stability of warm clouds. Part I: The relation between structure and stability. Tellus, 10, 256261, doi:10.1111/j.2153-3490.1958.tb02011.x.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1958b: The microstructure and colloidal stability of warm clouds. Part II: The causes of the variations in microstructure. Tellus, 10, 262271, doi:10.1111/j.2153-3490.1958.tb02012.x.

    • Search Google Scholar
    • Export Citation
  • Squires, P., and S. Twomey, 1966: A comparison of cloud nucleus measurements over central North America and the Caribbean Sea. J. Atmos. Sci., 23, 401404, doi:10.1175/1520-0469(1966)023<0401:ACOCNM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. A. Haggerty, A. Heymsfield, and C. A. Grainger, 2004: Microphysical characteristics of tropical updrafts in clean conditions. J. Appl. Meteor., 43, 779794, doi:10.1175/2104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toon, O. B., and Coauthors, 2016: Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission. J. Geophys. Res. Atmos., 21, 49675009, doi:10.1002/2015JD024297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The influence of cloud nucleus population on the microstructure and stability of convective clouds. Tellus, 11, 408411, doi:10.3402/tellusa.v11i4.9331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., and P. Squires, 1959: The influence of cloud nucleus population on the microstructure and stability of convective clouds. Tellus, 11, 408411, doi:10.3402/tellusa.v11i4.9331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2013: Physics and Dynamics of Clouds and Precipitation. Cambridge University Press, 450 pp.

    • Crossref
    • Export Citation
  • Wendisch, M., and J. L. Brenguier, 2013: Airborne Measurements for Environmental Research: Methods and Instruments. Wiley, 641 pp.

    • Crossref
    • Export Citation
  • Wildeman, S., S. Sterl, C. Sun, and D. Lohse, 2017: Fast dynamics of water droplets freezing from the outside in. Phys. Rev. Lett., 118, 084101, doi:10.1103/PhysRevLett.118.084101.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1115 374 51
PDF Downloads 814 190 19