Enhanced Bottom-of-the-Atmosphere Cooling and Atmosphere Heating Efficiency by Mixed-Type Aerosols: A Classification Based on Aerosol Nonsphericity

Pengfei Tian Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Pengfei Tian in
Current site
Google Scholar
PubMed
Close
,
Lei Zhang Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Lei Zhang in
Current site
Google Scholar
PubMed
Close
,
Xianjie Cao Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Xianjie Cao in
Current site
Google Scholar
PubMed
Close
,
Naixiu Sun Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Naixiu Sun in
Current site
Google Scholar
PubMed
Close
,
Xinyue Mo Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Xinyue Mo in
Current site
Google Scholar
PubMed
Close
,
Jiening Liang Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jiening Liang in
Current site
Google Scholar
PubMed
Close
,
Xuetao Li Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Xuetao Li in
Current site
Google Scholar
PubMed
Close
,
Xingai Gao Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Xingai Gao in
Current site
Google Scholar
PubMed
Close
,
Beidou Zhang Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Beidou Zhang in
Current site
Google Scholar
PubMed
Close
, and
Hongbin Wang Key Laboratory of Transportation Meteorology of the China Meteorological Administration, Jiangsu Institute of Meteorological Sciences, Nanjing, China

Search for other papers by Hongbin Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The current understanding of the climate effects of mixed-type aerosols is an open question. The optical and radiative properties of the anthropogenic, mixed-type, and dust aerosols were studied using simultaneous observations of a sun photometer and a depolarization lidar over the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), northwestern China. The aerosol radiative effect was calculated using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model and was in good agreement with the Aerosol Robotic Network (AERONET) product. The anthropogenic, mixed-type, and dust aerosols were identified mainly based on the lidar-measured depolarization ratio, which was supported by the airmass back trajectories. The mixed-type aerosols exhibit lower (higher) extinctions below (above) 1.5 km above the ground, indicating anthropogenic pollution from the atmospheric boundary layer and dust aerosols above. The dust aerosols exhibit the highest absolute radiative effect because of the highest aerosol loading. However, the mixed-type aerosols are effective in both scattering and absorbing solar radiation, leading to the highest cooling efficiency at the bottom of the atmosphere (BOA), 7.4% and 6.5% higher than those of the anthropogenic and dust aerosols, respectively. The mixed-type aerosols exhibit the highest warming efficiency in the atmosphere (ATM), 20.8% and 28.2% higher than the anthropogenic and dust aerosols, respectively. The mixed-type aerosols also show the lowest cooling efficiency at the top of the atmosphere (TOA). The results suggest the necessity of carefully characterizing the mixed-type aerosols in atmospheric numerical models to more precisely assess the energy budget of the Earth–atmosphere system.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Lei Zhang, zhanglei@lzu.edu.cn

Abstract

The current understanding of the climate effects of mixed-type aerosols is an open question. The optical and radiative properties of the anthropogenic, mixed-type, and dust aerosols were studied using simultaneous observations of a sun photometer and a depolarization lidar over the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), northwestern China. The aerosol radiative effect was calculated using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model and was in good agreement with the Aerosol Robotic Network (AERONET) product. The anthropogenic, mixed-type, and dust aerosols were identified mainly based on the lidar-measured depolarization ratio, which was supported by the airmass back trajectories. The mixed-type aerosols exhibit lower (higher) extinctions below (above) 1.5 km above the ground, indicating anthropogenic pollution from the atmospheric boundary layer and dust aerosols above. The dust aerosols exhibit the highest absolute radiative effect because of the highest aerosol loading. However, the mixed-type aerosols are effective in both scattering and absorbing solar radiation, leading to the highest cooling efficiency at the bottom of the atmosphere (BOA), 7.4% and 6.5% higher than those of the anthropogenic and dust aerosols, respectively. The mixed-type aerosols exhibit the highest warming efficiency in the atmosphere (ATM), 20.8% and 28.2% higher than the anthropogenic and dust aerosols, respectively. The mixed-type aerosols also show the lowest cooling efficiency at the top of the atmosphere (TOA). The results suggest the necessity of carefully characterizing the mixed-type aerosols in atmospheric numerical models to more precisely assess the energy budget of the Earth–atmosphere system.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Lei Zhang, zhanglei@lzu.edu.cn
Save
  • Ångström, A., 1929: On the atmospheric transmission of sun radiation and on dust in the air. Geogr. Ann., 11, 156166.

  • Arimoto, R., and Coauthors, 2006: Characterization of Asian dust during ACE-Asia. Global Planet. Change, 52, 2356, https://doi.org/10.1016/j.gloplacha.2006.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellouin, N., O. Boucher, M. Vesperini, and D. Tanré, 2004: Estimating the direct aerosol radiative perturbation: Impact of ocean surface representation and aerosol non-sphericity. Quart. J. Roy. Meteor. Soc., 130, 22172232, https://doi.org/10.1256/qj.03.136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, https://doi.org/10.1002/jgrd.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Cao, X., Z. Wang, P. Tian, J. Wang, L. Zhang, and X. Quan, 2013: Statistics of aerosol extinction coefficient profiles and optical depth using lidar measurement over Lanzhou, China since 2005–2008. J. Quant. Spectrosc. Radiat. Transfer, 122, 150154, https://doi.org/10.1016/j.jqsrt.2012.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., L. Yan, N. Ding, M. Xie, M. Lu, F. Zhang, Y. Duan, and S. Zong, 2016: Analysis of aerosol radiative forcing over Beijing under different air quality conditions using ground-based sun-photometers between 2013 and 2015. Remote Sens., 8, 510, https://doi.org/10.3390/rs8060510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costabile, F., F. Barnaba, F. Angelini, and G. P. Gobbi, 2013: Identification of key aerosol populations through their size and composition resolved spectral scattering and absorption. Atmos. Chem. Phys., 13, 24552470, https://doi.org/10.5194/acp-13-2455-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derimian, Y., and Coauthors, 2008: Radiative properties of aerosol mixture observed during the dry season 2006 over M’Bour, Senegal (African Monsoon Multidisciplinary Analysis campaign). J. Geophys. Res., 113, D00C09, https://doi.org/10.1029/2008JD009904.

    • Search Google Scholar
    • Export Citation
  • Derimian, Y., O. Dubovik, X. Huang, T. Lapyonok, P. Litvinov, A. B. Kostinski, P. Dubuisson, and F. Ducos, 2016: Comprehensive tool for calculation of radiative fluxes: Illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics. Atmos. Chem. Phys., 16, 57635780, https://doi.org/10.5194/acp-16-5763-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. Hess, 1998: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, 2000: Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. J. Geophys. Res., 105, 97919806, https://doi.org/10.1029/2000JD900040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubovik, O., B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, 2002a: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59, 590608, https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubovik, O., B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, 2002b: Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophys. Res. Lett., 29, 1415, https://doi.org/10.1029/2001GL014506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubovik, O., and Coauthors, 2006: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208, https://doi.org/10.1029/2005JD006619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eck, T. F., B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, 1999: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res., 104, 31 33331 349, https://doi.org/10.1029/1999JD900923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and Coauthors, 2005: Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J. Geophys. Res., 110, D06202, https://doi.org/10.1029/2004JD005274.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and Coauthors, 2010: Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. J. Geophys. Res., 115, D19205, https://doi.org/10.1029/2010JD014002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23, 652653, https://doi.org/10.1364/AO.23.000652.

  • García, O. E., and Coauthors, 2008: Validation of AERONET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements. J. Geophys. Res., 113, D21207, https://doi.org/10.1029/2008JD010211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García, O. E., F. J. Expósito, J. P. Díaz, and A. M. Díaz, 2011: Radiative forcing under mixed aerosol conditions. J. Geophys. Res., 116, D01201, https://doi.org/10.1029/2009JD013625.

    • Search Google Scholar
    • Export Citation
  • García, O. E., J. P. Díaz, F. J. Expósito, A. M. Díaz, O. Dubovik, Y. Derimian, P. Dubuisson, and J. C. Roger, 2012: Shortwave radiative forcing and efficiency of key aerosol types using AERONET data. Atmos. Chem. Phys., 12, 51295145, https://doi.org/10.5194/acp-12-5129-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., X. Liu, R. C. Easter, R. Zaveri, P. J. Rasch, J. H. Yoon, and B. Eaton, 2012: Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J. Climate, 25, 64616476, https://doi.org/10.1175/JCLI-D-11-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giles, D. M., and Coauthors, 2012: An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res., 117, D17203, https://doi.org/10.1029/2012JD018127.

    • Search Google Scholar
    • Export Citation
  • Gobbi, G. P., Y. J. Kaufman, I. Koren, and T. F. Eck, 2007: Classification of aerosol properties derived from AERONET direct sun data. Atmos. Chem. Phys., 7, 453458, https://doi.org/10.5194/acp-7-453-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, X., M. Zhang, L. Zhu, and L. Xu, 2013: Model analysis of influences of aerosol mixing state upon its optical properties in East Asia. Adv. Atmos. Sci., 30, 12011212, https://doi.org/10.1007/s00376-012-2150-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayasaka, T., S. Satake, A. Shimizu, N. Sugimoto, I. Matsui, K. Aoki, and Y. Muraji, 2007: Vertical distribution and optical properties of aerosols observed over Japan during the Atmospheric Brown Clouds–East Asia Regional Experiment 2005. J. Geophys. Res., 112, D22S35, https://doi.org/10.1029/2006JD008086.

    • Search Google Scholar
    • Export Citation
  • Heese, B., and M. Wiegner, 2008: Vertical aerosol profiles from Raman polarization lidar observations during the dry season AMMA field campaign. J. Geophys. Res., 113, D00C11, https://doi.org/10.1029/2007JD009487.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 2001: An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res., 106, 12 06712 097, https://doi.org/10.1029/2001JD900014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Höller, R., K. Ito, S. Tohno, and M. Kasahara, 2003: Wavelength-dependent aerosol single-scattering albedo: Measurements and model calculations for a coastal site near the Sea of Japan during ACE-Asia. J. Geophys. Res., 108, 8648, https://doi.org/10.1029/2002JD003250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and Coauthors, 2008a: An overview of the Semi-Arid Climate and Environment Research Observatory over the Loess Plateau. Adv. Atmos. Sci., 25, 906921, https://doi.org/10.1007/s00376-008-0906-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., Z. Huang, J. Bi, W. Zhang, and L. Zhang, 2008b: Micro-pulse lidar measurements of aerosol vertical structure over the Loess Plateau. Atmos. Ocean. Sci. Lett., 1, 811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., Q. Fu, J. Su, Q. Tang, P. Minnis, Y. Hu, Y. Yi, and Q. Zhao, 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 40114021, https://doi.org/10.5194/acp-9-4011-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Z., and Coauthors, 2010: Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment. J. Geophys. Res., 115, D00K15, https://doi.org/10.1029/2009JD013273.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695697, https://doi.org/10.1038/35055518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahnert, M., and A. Kylling, 2004: Radiance and flux simulations for mineral dust aerosols: Assessing the error due to using spherical or spheroidal model particles. J. Geophys. Res., 109, D09203, https://doi.org/10.1029/2003JD004318.

    • Search Google Scholar
    • Export Citation
  • Kahnert, M., T. Nousiainen, and B. Veihelmann, 2005: Spherical and spheroidal model particles as an error source in aerosol climate forcing and radiance computations: A case study for feldspar aerosols. J. Geophys. Res., 110, D18S13, https://doi.org/10.1029/2004JD005558.

    • Search Google Scholar
    • Export Citation
  • Kai, K., and Coauthors, 2008: The structure of the dust layer over the Taklimakan Desert during the dust storm in April 2002 as observed using a depolarization lidar. J. Meteor. Soc. Japan, 86, 116, https://doi.org/10.2151/jmsj.86.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatri, P., T. Takamura, A. Shimizu, and N. Sugimoto, 2014: Observation of low single scattering albedo of aerosols in the downwind of the East Asian desert and urban areas during the inflow of dust aerosols. J. Geophys. Res. Atmos., 119, 787802, https://doi.org/10.1002/2013JD019961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koepke, P., J. Gasteiger, and M. Hess, 2015: Technical note: Optical properties of desert aerosol with non-spherical mineral particles: Data incorporated to OPAC. Atmos. Chem. Phys., 15, 59475956, https://doi.org/10.5194/acp-15-5947-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kok, J. F., and Coauthors, 2017: Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci., 10, 274278, https://doi.org/10.1038/ngeo2912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., J. Kim, C. H. Song, S. B. Kim, Y. Chun, B. J. Sohn, and B. N. Holben, 2010: Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos. Environ., 44, 31103117, https://doi.org/10.1016/j.atmosenv.2010.05.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lesins, G., P. Chylek, and U. Lohmann, 2002: A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J. Geophys. Res., 107, 4094, https://doi.org/10.1029/2001JD000973.

    • Search Google Scholar
    • Export Citation
  • Li, J., B. E. Carlson, and A. A. Lacis, 2015: Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures. J. Geophys. Res. Atmos., 120, 20372052, https://doi.org/10.1002/2014JD022433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and Coauthors, 2007: Preface to special section on East Asian Studies of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE). J. Geophys. Res., 112, D22S00, https://doi.org/10.1029/2007JD008853.

    • Search Google Scholar
    • Export Citation
  • Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888894, https://doi.org/10.1038/ngeo1313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., 2002: An Introduction to Atmospheric Radiation. Academic Press, 583 pp.

  • Loeb, N. G., and W. Su, 2010: Direct aerosol radiative forcing uncertainty based on a radiative perturbation analysis. J. Climate, 23, 52885293, https://doi.org/10.1175/2010JCLI3543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logan, T., B. Xi, X. Dong, Z. Li, and M. Cribb, 2013: Classification and investigation of Asian aerosol absorptive properties. Atmos. Chem. Phys., 13, 22532265, https://doi.org/10.5194/acp-13-2253-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowicz, K. M., P. J. Flatau, J. Remiszewska, M. Witek, E. A. Reid, J. S. Reid, A. Bucholtz, and B. Holben, 2008: Observations and modeling of the surface aerosol radiative forcing during UAE2. J. Atmos. Sci., 65, 28772891, https://doi.org/10.1175/2007JAS2555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mielonen, T., A. Arola, M. Komppula, J. Kukkonen, J. Koskinen, G. de Leeuw, and K. E. J. Lehtinen, 2009: Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived from AERONET inversion data. Geophys. Res. Lett., 36, L18804, https://doi.org/10.1029/2009GL039609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and J. W. Hovenier, 1995: Depolarization of light backscattered by randomly oriented nonspherical particles. Opt. Lett., 20, 13561359, https://doi.org/10.1364/OL.20.001356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortier, A., and Coauthors, 2016: Climatology of aerosol properties and clear-sky shortwave radiative effects using lidar and sun photometer observations in the Dakar site. J. Geophys. Res. Atmos., 121, 64896510, https://doi.org/10.1002/2015JD024588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • Nemuc, A., J. Vasilescu, C. Talianu, L. Belegante, and D. Nicolae, 2013: Assessment of aerosol’s mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations. Atmos. Meas. Tech., 6, 32433255, https://doi.org/10.5194/amt-6-3243-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y. M., D. Müller, H. Lee, K. Lee, K. Kim, S. Shin, and Y. J. Kim, 2012: Estimation of radiative forcing by the dust and non-dust content in mixed East Asian pollution plumes on the basis of depolarization ratios measured with lidar. Atmos. Environ., 61, 221231, https://doi.org/10.1016/j.atmosenv.2012.07.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obregón, M. A., S. Pereira, V. Salgueiro, M. J. Costa, A. M. Silva, A. Serrano, and D. Bortoli, 2015: Aerosol radiative effects during two desert dust events in August 2012 over the southwestern Iberian Peninsula. Atmos. Res., 153, 404415, https://doi.org/10.1016/j.atmosres.2014.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omar, A. H., and Coauthors, 2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 19942014, https://doi.org/10.1175/2009JTECHA1231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilinis, C., S. N. Pandis, and J. H. Seinfeld, 1995: Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition. J. Geophys. Res., 100, 18 73918 754, https://doi.org/10.1029/95JD02119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, J., X. Tie, Q. Zhang, Q. Liu, X. Li, Y. Gao, and D. Zhao, 2014: Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmos. Environ., 88, 8389, https://doi.org/10.1016/j.atmosenv.2014.01.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Y. J. Kaufman, 2006: Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data. Atmos. Chem. Phys., 6, 237253, https://doi.org/10.5194/acp-6-237-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricchiazzi, P., S. R. Yang, C. Gautier, and D. Sowle, 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Amer. Meteor. Soc., 79, 21012114, https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., S. Sherwood, R. Wood, and L. Donner, 2014: Climate effects of aerosol-cloud interactions. Science, 343, 379380, https://doi.org/10.1126/science.1247490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scarnato, B. V., S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, 2013: Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model. Atmos. Chem. Phys., 13, 50895101, https://doi.org/10.5194/acp-13-5089-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, S., Y. M. Noh, K. Lee, H. Lee, D. Müller, Y. J. Kim, K. Kim, and D. Shin, 2014: Retrieval of the single scattering albedo of Asian dust mixed with pollutants using lidar observations. Adv. Atmos. Sci., 31, 14171426, https://doi.org/10.1007/s00376-014-3244-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sicard, M., R. Barragan, F. Dulac, L. Alados-Arboledas, and M. Mallet, 2016: Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean. Atmos. Chem. Phys., 16, 12 17712 203, https://doi.org/10.5194/acp-16-12177-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R., S. Ramachandran, and T. A. Rajesh, 2016: Aerosol mixing over an urban region: Radiative effects. Quart. J. Roy. Meteor. Soc., 142, 17321744, https://doi.org/10.1002/qj.2769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2015: Rethinking the lower bound on aerosol radiative forcing. J. Climate, 28, 47944819, https://doi.org/10.1175/JCLI-D-14-00656.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, N., I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, and T. Nakajima, 2002: Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two-wavelength polarization lidar on board the Research Vessel Mirai. Geophys. Res. Lett., 29, 1901, https://doi.org/10.1029/2002GL015112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, P., X. Cao, J. Liang, L. Zhang, N. Yi, L. Wang, and X. Cheng, 2014: Improved empirical mode decomposition based denoising method for lidar signals. Opt. Commun., 325, 5459, https://doi.org/10.1016/j.optcom.2014.03.083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, P., X. Cao, L. Zhang, H. Wang, J. Shi, Z. Huang, T. Zhou, and H. Liu, 2015: Observation and simulation study of atmospheric aerosol nonsphericity over the Loess Plateau in northwest China. Atmos. Environ., 117, 212219, https://doi.org/10.1016/j.atmosenv.2015.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, P., and Coauthors, 2017: Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing. Atmos. Chem. Phys., 17, 25092523, https://doi.org/10.5194/acp-17-2509-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, X., 2014: A critical assessment of direct radiative effects of different aerosol types on surface global radiation and its components. J. Quant. Spectrosc. Radiat. Transfer, 149, 7280, https://doi.org/10.1016/j.jqsrt.2014.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, X., and Coauthors, 2016: Ground-based remote sensing of aerosol climatology in China: Aerosol optical properties, direct radiative effect and its parameterization. Atmos. Environ., 124, 243251, https://doi.org/10.1016/j.atmosenv.2015.05.071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, C. B., T. Nishizawa, N. Sugimoto, I. Matsui, and Z. F. Wang, 2008: Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China. Appl. Opt., 47, 49454951, https://doi.org/10.1364/AO.47.004945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, Q., E. S. Robinson, X. Ding, P. Ye, R. C. Sullivan, and N. M. Donahue, 2016: Mixing of secondary organic aerosols versus relative humidity. Proc. Natl. Acad. Sci. USA, 113, 12 64912 654, https://doi.org/10.1073/pnas.1604536113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, B. Q., C. N. Hsu, P. Yang, and S. C. Tsay, 2011: Radiative transfer simulation of dust-like aerosols: Uncertainties from particle shape and refractive index. J. Aerosol Sci., 42, 631644, https://doi.org/10.1016/j.jaerosci.2011.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., and Coauthors, 2016: Dust aerosol properties and radiative forcing observed in spring during 2001–2014 over urban Beijing, China. Environ. Sci. Pollut. Res., 23, 15 43215 442, https://doi.org/10.1007/s11356-016-6727-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., X. Cao, J. Bao, B. Zhou, J. Huang, J. Shi, and J. Bi, 2010: A case study of dust aerosol radiative properties over Lanzhou, China. Atmos. Chem. Phys., 10, 42834293, https://doi.org/10.5194/acp-10-4283-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. Y., and Coauthors, 2015: Formation of urban fine particulate matter. Chem. Rev., 115, 38033855, https://doi.org/10.1021/acs.chemrev.5b00067.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 573 178 3
PDF Downloads 477 100 4