Simulation of Mesoscale Cellular Convection in Marine Stratocumulus. Part I: Drizzling Conditions

Xiaoli Zhou Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada, and Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Xiaoli Zhou in
Current site
Google Scholar
PubMed
Close
,
Andrew S. Ackerman NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Andrew S. Ackerman in
Current site
Google Scholar
PubMed
Close
,
Ann M. Fridlind NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Ann M. Fridlind in
Current site
Google Scholar
PubMed
Close
, and
Pavlos Kollias School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, and Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Upton, New York

Search for other papers by Pavlos Kollias in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of subcloud moist cold pools surprisingly tends to respond to, rather than determine, the mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoli Zhou, xiaoliz@uw.edu

Abstract

This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of subcloud moist cold pools surprisingly tends to respond to, rather than determine, the mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoli Zhou, xiaoliz@uw.edu
Save
  • Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1993: Dissipation of marine stratiform clouds and collapse of the marine boundary layer due to the depletion of cloud condensation nuclei by clouds. Science, 262, 226229, https://doi.org/10.1126/science.262.5131.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017, https://doi.org/10.1038/nature03174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110, https://doi.org/10.1175/2008MWR2582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agee, E. M., T. S. Chen, and K. E. Dowell, 1973: A review of mesoscale cellular convection. Bull. Amer. Meteor. Soc., 54, 10041012, https://doi.org/10.1175/1520-0477(1973)054<1004:AROMCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Scubert, and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431, https://doi.org/10.1029/96RG02623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, A. H., C. S. Bretherton, and R. Wood, 2011: Large-eddy simulation of mesoscale dynamics and entrainment around a pocket of open cells observed in VOCALS-REx RF06. Atmos. Chem. Phys., 11, 10 52510 540, https://doi.org/10.5194/acp-11-10525-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., 1987: Multiple scattering of light and some of its observable consequences. Amer. J. Phys., 55, 524533, https://doi.org/10.1119/1.15109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 26822698, https://doi.org/10.1175/JAS-D-11-0317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and J. L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., T. Uttal, C. W. Fairall, and S. E. Yuter, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977, https://doi.org/10.1175/BAMS-85-7-967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. Uchida, and P. N. Blossey, 2010: Slow manifolds and multiple equilibria in stratocumulus-capped boundary layers. J. Adv. Model. Earth Syst., 2 (14), https://doi.org/10.3894/JAMES.2010.2.14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., C. S. Bretherton, and S. E. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37923807, https://doi.org/10.1175/JAS3567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., S. E. Yuter, R. Wood, and C. S. Bretherton, 2007: The three-dimensional structure and kinematics of drizzling stratocumulus. Mon. Wea. Rev., 135, 37673784, https://doi.org/10.1175/2007MWR1944.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://doi.org/10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., P. G. Duynkerke, and H. J. Jonker, 2004: Large-eddy simulation: How large is large enough? J. Atmos. Sci., 61, 403421, https://doi.org/10.1175/1520-0469(2004)061<0403:LSHLIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., 1997: Broadening of convective cells. Quart. J. Roy. Meteor. Soc., 123, 829847, https://doi.org/10.1002/qj.49712354003.

  • Feingold, G., R. Boers, B. Stevens, and W. R. Cotton, 1997: A modeling study of the effect of drizzle on cloud optical depth and susceptibility. J. Geophys. Res., 102, 13 52713 534, https://doi.org/10.1029/97JD00963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., I. Koren, H. Wang, H. Xue, and W. A. Brewer, 2010: Precipitation-generated oscillations in open cellular cloud fields. Nature, 466, 849852, https://doi.org/10.1038/nature09314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with a Kα-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52, 27882799, https://doi.org/10.1175/1520-0469(1995)052<2788:MOSCAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2015: Numerical simulations of Hurricane Katrina (2005) in the turbulent gray zone. J. Adv. Model. Earth Syst., 7, 142161, https://doi.org/10.1002/2014MS000399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, K. R., and H. Ottersten, 1969: Radar investigations of convective patterns in the clear atmosphere. J. Atmos. Sci., 26, 666672, https://doi.org/10.1175/1520-0469(1969)26<666:RIOCPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. R., C. S. Bretherton, and D. Leon, 2011: Coupled vs. decoupled boundary layers in VOCALS-REx. Atmos. Chem. Phys., 11, 71437153, https://doi.org/10.5194/acp-11-7143-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonker, H. J. J., and J. Vilà-Guerau de Arellano, 2005: The influence of chemistry on the length scales of reactive species in convective atmospheric boundary layers (in Russian). Khim. Fiz., 24, 8796.

    • Search Google Scholar
    • Export Citation
  • Jonker, H. J. J., P. G. Duynkerke, and J. W. Cuijpers, 1999: Mesoscale fluctuations in scalars generated by boundary layer convection. J. Atmos. Sci., 56, 801808, https://doi.org/10.1175/1520-0469(1999)056<0801:MFISGB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, M. P., A. S. Ackerman, D. E. Stevens, and N. N. Mansour, 2006: On the application of the dynamic Smagorinsky model to large-eddy simulations of the cloud-topped atmospheric boundary layer. J. Atmos. Sci., 63, 526546, https://doi.org/10.1175/JAS3651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lima, M. A., and J. W. Wilson, 2008: Convective storm initiation in a moist tropical environment. Mon. Wea. Rev., 136, 18471864, https://doi.org/10.1175/2007MWR2279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K. N., and S. C. Ou, 1989: The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective. J. Geophys. Res., 94, 85998607, https://doi.org/10.1029/JD094iD06p08599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. A., and B. A. Albrecht, 1995: Surface-based observations of mesoscale cumulus–stratocumulus interaction during ASTEX. J. Atmos. Sci., 52, 28092826, https://doi.org/10.1175/1520-0469(1995)052<2809:SBOOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci., 65, 792812, https://doi.org/10.1175/2007JAS2374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., I. L. McCoy, and R. Wood, 2014: Climatology of stratocumulus cloud morphologies: Microphysical properties and radiative effects. Atmos. Chem. Phys., 14, 66956716, https://doi.org/10.5194/acp-14-6695-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, G., and A. Chlond, 1996: Three-dimensional numerical study of cell broadening during cold-air outbreaks. Bound.-Layer Meteor., 81, 289323, https://doi.org/10.1007/BF02430333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, K., M. Hara, A. T. Noda, H. Tomita, and Y. Wakazuki, 2012: Simulation and verification of tropical deep convective clouds using eddy-permitting regional atmospheric models II. Earth Simulator Center Annual Rep., 61–65, https://www.jamstec.go.jp/esc/publication/annual/annual2012/pdf/2project/chapter1/061nakamura.pdf.

  • Pino, D., H. J. J. Jonker, J. Vilà-Guerau de Arellano, and A. Dosio, 2006: Role of shear and the inversion strength during sunset turbulence over land: Characteristic length scales. Bound.-Layer Meteor., 121, 537556, https://doi.org/10.1007/s10546-006-9080-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • Rosenfeld, D., Y. J. Kaufman, and I. Koren, 2006: Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols. Atmos. Chem. Phys., 6, 25032511, https://doi.org/10.5194/acp-6-2503-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 15871605, https://doi.org/10.1175/2007JAS2456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schröter, M., S. Raasch, and H. Jansen, 2005: Cell broadening revisited: Results from high-resolution large-eddy simulations of cold air outbreaks. J. Atmos. Sci., 62, 20232032, https://doi.org/10.1175/JAS3451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., 2008: On the parameterization of evaporation of raindrops as simulated by a one-dimensional rainshaft model. J. Atmos. Sci., 65, 36083619, https://doi.org/10.1175/2008JAS2586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and T. Heus, 2013: Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos. Chem. Phys., 13, 56315645, https://doi.org/10.5194/acp-13-5631-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Q., and D. A. Randall, 1996: Closed mesoscale cellular convection driven by cloud-top radiative cooling. J. Atmos. Sci., 53, 21442165, https://doi.org/10.1175/1520-0469(1996)053<2144:CMCCDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharon, T. M., B. A. Albrecht, H. H. Jonsson, P. Minnis, M. M. Khaiyer, T. M. van Reken, J. Seinfeld, and R. Flagan, 2006. Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J. Atmos. Sci., 63, 983997, https://doi.org/10.1175/JAS3667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C. H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638, https://doi.org/10.1175/1520-0469(1998)055<3616:LESOSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and chemistry of marine stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593, https://doi.org/10.1175/BAMS-84-5-579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, https://doi.org/10.1175/MWR2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Terai, C. R., C. S. Bretherton, R. Wood, and G. Painter, 2014: Aircraft observations of aerosol, cloud, precipitation, and boundary layer properties in pockets of open cells over the southeast Pacific. Atmos. Chem. Phys., 14, 80718088, https://doi.org/10.5194/acp-14-8071-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., R. D. Kelly, J. French, S. Haimov, D. Leon, R. E. McIntosh, and A. Pazmany, 1998: Finescale structure and microphysics of coastal stratus. J. Atmos. Sci., 55, 35403564, https://doi.org/10.1175/1520-0469(1998)055<3540:FSAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and B. Stevens, 2005: Observations of the structure of heavily precipitating marine stratocumulus. J. Atmos. Sci., 62, 43274342, https://doi.org/10.1175/JAS3611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and G. Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 32373256, https://doi.org/10.1175/2009JAS3022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., B. A. Albrecht, and P. Minnis, 1993: A regional simulation of marine boundary-layer clouds. J. Atmos. Sci., 50, 40224043, https://doi.org/10.1175/1520-0469(1993)050<4022:ARSOMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 30113033, https://doi.org/10.1175/JAS3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate, 19, 17481764, https://doi.org/10.1175/JCLI3702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, D. Leon, A. D. Clarke, P. Zuidema, G. Allen, and H. Coe, 2011: An aircraft case study of the spatial transition from closed to open mesoscale cellular convection over the southeast Pacific. Atmos. Chem. Phys., 11, 23412370, https://doi.org/10.5194/acp-11-2341-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, H., G. Feingold, and B. Stevens, 2008: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci., 65, 392406, https://doi.org/10.1175/2007JAS2428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and G. Feingold, 2015: On the relationship between open cellular convective cloud patterns and the spatial distribution of precipitation. Atmos. Chem. Phys., 15, 12371251, https://doi.org/10.5194/acp-15-1237-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., T. Heus, and P. Kollias, 2017: Influences of drizzle on stratocumulus cloudiness and organization. J. Geophys. Res. Atmos., 122, 69897003, https://doi.org/10.1002/2017JD026641.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 514 156 6
PDF Downloads 497 112 4