How Uncertainty in Field Measurements of Ice Nucleating Particles Influences Modeled Cloud Forcing

S. Garimella Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by S. Garimella in
Current site
Google Scholar
PubMed
Close
,
D. A. Rothenberg Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by D. A. Rothenberg in
Current site
Google Scholar
PubMed
Close
,
M. J. Wolf Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by M. J. Wolf in
Current site
Google Scholar
PubMed
Close
,
C. Wang Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by C. Wang in
Current site
Google Scholar
PubMed
Close
, and
D. J. Cziczo Department of Earth, Atmospheric and Planetary Sciences, and Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by D. J. Cziczo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Field and laboratory measurements using continuous flow diffusion chambers (CFDCs) have been used to construct parameterizations of the number of ice nucleating particles (INPs) in mixed-phase and completely glaciated clouds in weather and climate models. Because of flow nonidealities, CFDC measurements are subject to systematic low biases. Here, the authors investigate the effects of this undercounting bias on simulated cloud forcing in a global climate model. The authors assess the influence of measurement variability by constructing a stochastic parameterization framework to endogenize measurement uncertainty. The authors find that simulated anthropogenic longwave ice-bearing cloud forcing in a global climate model can vary up to 0.8 W m−2 and can change sign from positive to negative within the experimentally constrained bias range. Considering the variability in the undercounting bias, in a range consistent with recent experiments, leads to a larger negative cloud forcing than that when the variability is ignored and only a constant bias is assumed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. J. Cziczo, djcziczo@mit.edu

Abstract

Field and laboratory measurements using continuous flow diffusion chambers (CFDCs) have been used to construct parameterizations of the number of ice nucleating particles (INPs) in mixed-phase and completely glaciated clouds in weather and climate models. Because of flow nonidealities, CFDC measurements are subject to systematic low biases. Here, the authors investigate the effects of this undercounting bias on simulated cloud forcing in a global climate model. The authors assess the influence of measurement variability by constructing a stochastic parameterization framework to endogenize measurement uncertainty. The authors find that simulated anthropogenic longwave ice-bearing cloud forcing in a global climate model can vary up to 0.8 W m−2 and can change sign from positive to negative within the experimentally constrained bias range. Considering the variability in the undercounting bias, in a range consistent with recent experiments, leads to a larger negative cloud forcing than that when the variability is ignored and only a constant bias is assumed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. J. Cziczo, djcziczo@mit.edu
Save
  • Boose, Y., and Coauthors, 2016: Ice nucleating particles in the Saharan air layer. Atmos. Chem. Phys., 16, 90679087, https://doi.org/10.5194/acp-16-9067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657, https://doi.org/10.1017/CBO9781107415324.016.

    • Crossref
    • Export Citation
  • Chou, C., O. Stetzer, E. Weingartner, Z. Juranyi, Z. A. Kanji, and U. Lohmann, 2011: Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps. Atmos. Chem. Phys., 11, 47254738, https://doi.org/10.5194/acp-11-4725-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., and Coauthors, 2009: Inadvertent climate modification due to anthropogenic lead. Nat. Geosci., 2, 333336, https://doi.org/10.1038/ngeo499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003a: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 65514 660, https://doi.org/10.1073/pnas.2532677100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003b: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, https://doi.org/10.1029/2003GL017410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, https://doi.org/10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2015: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys., 15, 393409, https://doi.org/10.5194/acp-15-393-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2014: Aerosol impacts on California winter clouds and precipitation during CalWater 2011: Local pollution versus long-range transported dust. Atmos. Chem. Phys., 14, 81101, https://doi.org/10.5194/acp-14-81-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Garimella, S., and Coauthors, 2016: The Spectrometer for Ice Nuclei (SPIN): An instrument to investigate ice nucleation. Atmos. Meas. Tech., 9, 27812795, https://doi.org/10.5194/amt-9-2781-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garimella, S., D. A. Rothenberg, M. J. Wolf, R. O. David, Z. A. Kanji, C. Wang, M. Rösch, and D. J. Cziczo, 2017: Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers. Atmos. Chem. Phys., 17, 10 85510 864, https://doi.org/10.5194/acp-17-10855-2017.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., X. Liu, D. Barahona, U. Lohmann, and C. C. Chen, 2012: Climate impacts of ice nucleation. J. Geophys. Res., 117, D20201, https://doi.org/10.1029/2012JD017950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, S. Santos, P. Bogenschutz, and P. Caldwell, 2015: Advanced two-moment bulk microphysics for global models. Part II: Global model solutions and aerosol–cloud interactions. J. Climate, 28, 12881307, https://doi.org/10.1175/JCLI-D-14-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., 2013: Technical note: Estimating aerosol effects on cloud radiative forcing. Atmos. Chem. Phys., 13, 99719974, https://doi.org/10.5194/acp-13-9971-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hande, L. B., C. Engler, C. Hoose, and I. Tegen, 2015: Seasonal variability of Saharan desert dust and ice nucleating particles over Europe. Atmos. Chem. Phys., 15, 43894397, https://doi.org/10.5194/acp-15-4389-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., L. J. Donner, A. Jones, and J.-C. Golaz, 2009: Global indirect radiative forcing caused by aerosols: IPCC (2007) and beyond. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 451–467.

  • Hoose, C., U. Lohmann, R. Erdin, and I. Tegen, 2008: The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ. Res. Lett., 3, 025003, https://doi.org/10.1088/1748-9326/3/2/025003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., C. Wang, A. Ekman, M. Barth, and P. Rasch, 2008: Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size-resolving aerosol–climate model. J. Geophys. Res., 113, D16309, https://doi.org/10.1029/2007JD009756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., C. Wang, A. Ekman, M. Barth, and D. Lee, 2014: The responses of cloudiness to the direct radiative effect of sulfate and carbonaceous aerosols. J. Geophys. Res. Atmos., 119, 11721185, https://doi.org/10.1002/2013JD020529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koop, T., B. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611614, https://doi.org/10.1038/35020537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and H. T. Wu, 2007: Detecting trends in tropical rainfall characteristics, 1979–2003. Int. J. Climatol., 27, 979988, https://doi.org/10.1002/joc.1454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and J. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14, 499514, https://doi.org/10.1127/0941-2948/2005/0059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N., B. Wielicki, D. Doelling, G. Smith, D. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and Coauthors, 2010: Total aerosol effect: Radiative forcing or radiative flux perturbation? Atmos. Chem. Phys., 10, 32353246, https://doi.org/10.5194/acp-10-3235-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, D. K., K. Sassen, D. O. Starr, and G. Stephens, 2002: Cirrus. Oxford University Press, 504 pp.

    • Crossref
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131, 15391565, https://doi.org/10.1256/qj.04.94.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 65196554, https://doi.org/10.1039/c2cs35200a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Rogers, D. C., 1988: Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos. Res., 22, 149181, https://doi.org/10.1016/0169-8095(88)90005-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stetzer, O., B. Baschek, F. Lüönd, and U. Lohmann, 2008: The Zurich Ice Nucleation Chamber (ZINC)—A new instrument to investigate atmospheric ice formation. Aerosol Sci. Technol., 42, 6474, https://doi.org/10.1080/02786820701787944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storelvmo, T., C. Hoose, and P. Eriksson, 2011: Global modeling of mixed-phase clouds: The albedo and lifetime effects of aerosols. J. Geophys. Res., 116, D05207, https://doi.org/10.1029/2010JD014724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, I., and T. Storelvmo, 2016: Sensitivity study on the influence of cloud microphysical parameters on mixed-phase cloud thermodynamic phase partitioning in CAM5. J. Atmos. Sci., 73, 709728, https://doi.org/10.1175/JAS-D-15-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobo, Y., and Coauthors, 2013: Biological aerosol particles as a key determinant of ice nuclei populations in a forest ecosystem. J. Geophys. Res. Atmos., 118, 10 10010 110, https://doi.org/10.1002/jgrd.50801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wex, H., and Coauthors, 2014: Kaolinite particles as ice nuclei: Learning from the use of different kaolinite samples and different coatings. Atmos. Chem. Phys., 14, 55295546, https://doi.org/10.5194/acp-14-5529-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., X. Liu, C. Zhao, and Y. Zhang, 2013: Sensitivity of CAM5-simulated Arctic clouds and radiation to ice nucleation parameterization. J. Climate, 26, 59815999, https://doi.org/10.1175/JCLI-D-12-00517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 372 128 6
PDF Downloads 302 64 7