Predictive Skill and Predictability of North Atlantic Tropical Cyclogenesis in Different Synoptic Flow Regimes

Zhuo Wang University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Zhuo Wang in
Current site
Google Scholar
PubMed
Close
,
Weiwei Li University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Weiwei Li in
Current site
Google Scholar
PubMed
Close
,
Melinda S. Peng Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Melinda S. Peng in
Current site
Google Scholar
PubMed
Close
,
Xianan Jiang Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by Xianan Jiang in
Current site
Google Scholar
PubMed
Close
,
Ron McTaggart-Cowan Numerical Weather Prediction Research Section, Environment and Climate Change Canada, Dorval, Quebec, Canada

Search for other papers by Ron McTaggart-Cowan in
Current site
Google Scholar
PubMed
Close
, and
Christopher A. Davis National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Christopher A. Davis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Practical predictability of tropical cyclogenesis over the North Atlantic is evaluated in different synoptic flow regimes using the NCEP Global Ensemble Forecast System (GEFS) reforecasts with forecast lead time up to two weeks. Synoptic flow regimes are represented by tropical cyclogenesis pathways defined in a previous study based on the low-level baroclinicity and upper-level forcing of the genesis environmental state, including nonbaroclinic, low-level baroclinic, trough-induced, weak tropical transition (TT), and strong TT pathways. It is found that the strong TT and weak TT pathways have lower predictability than the other pathways, linked to the lower predictability of vertical wind shear and midlevel humidity in the genesis vicinity of a developing TT storm. Further analysis suggests that stronger extratropical influences contribute to lower genesis predictability. It is also shown that the regional and seasonal variations of the genesis predictive skill in the GEFS can be largely explained by the relative frequency of occurrence of each pathway and the predictability differences among pathways. Predictability of tropical cyclogenesis is further discussed using the concept of the genesis potential index.

Publisher's Note: This article was updated on 16 August 2018 to replace an older version of Fig. 3 that was mistakenly used when originally published.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhuo Wang, zhuowang@illinois.edu

Abstract

Practical predictability of tropical cyclogenesis over the North Atlantic is evaluated in different synoptic flow regimes using the NCEP Global Ensemble Forecast System (GEFS) reforecasts with forecast lead time up to two weeks. Synoptic flow regimes are represented by tropical cyclogenesis pathways defined in a previous study based on the low-level baroclinicity and upper-level forcing of the genesis environmental state, including nonbaroclinic, low-level baroclinic, trough-induced, weak tropical transition (TT), and strong TT pathways. It is found that the strong TT and weak TT pathways have lower predictability than the other pathways, linked to the lower predictability of vertical wind shear and midlevel humidity in the genesis vicinity of a developing TT storm. Further analysis suggests that stronger extratropical influences contribute to lower genesis predictability. It is also shown that the regional and seasonal variations of the genesis predictive skill in the GEFS can be largely explained by the relative frequency of occurrence of each pathway and the predictability differences among pathways. Predictability of tropical cyclogenesis is further discussed using the concept of the genesis potential index.

Publisher's Note: This article was updated on 16 August 2018 to replace an older version of Fig. 3 that was mistakenly used when originally published.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhuo Wang, zhuowang@illinois.edu
Save
  • American Meteorological Society, 2012: “Predictability.” Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Predictability.

  • Avila, L. A., 2011: Tropical cyclone report: Hurricane Shary (AL202010) 28-30 October 2010. National Hurricane Center Rep., 10 pp.

  • Barnston, A. G., N. Vigaud, L. N. Long, M. K. Tippett, and J.-K. E. Schemm, 2015: Atlantic tropical cyclone activity in response to the MJO in NOAA’s CFS model. Mon. Wea. Rev., 143, 49054927, https://doi.org/10.1175/MWR-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, A., L. Bosart, and D. Keyser, 2017: Upper-tropospheric precursors to the formation of subtropical cyclones that undergo tropical transition in the North Atlantic basin. Mon. Wea. Rev., 145, 503520, https://doi.org/10.1175/MWR-D-16-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., 2010: Tropical cyclone report: Tropical Storm Matthew, 23-26 September 2010. National Hurricane Center Rep., 15 pp.

  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., 2014: Tropical cyclone report: Tropical Storm Hanna, 22-28 October 2014. National Hurricane Center Rep., 14 pp.

  • Charney, J. G., and J. Shukla, 1981, Predictability of monsoons. Monsoon Dynamics, J. Lighthill and R. Pearce, Eds., Cambridge University Press, 735 pp.

    • Crossref
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, https://doi.org/10.1175/JCLI-D-12-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, https://doi.org/10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 16571662, https://doi.org/10.1175/BAMS-85-11-1657.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., D. A. Ahijevych, W. Wang, and W. C. Skamarock, 2016: Evaluating medium-range tropical cyclone forecasts in uniform- and variable-resolution global models. Mon. Wea. Rev., 144, 41414160, https://doi.org/10.1175/MWR-D-16-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., W. M. Clune, and P. A. Harr, 2009: Evaluation of global model early track and formation prediction in the western North Pacific. Asia-Pac. J. Atmos. Sci., 45, 357374.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., M. S. Jordan, and F. Vitart, 2011: Evaluation of the ECMWF 32-day ensemble predictions during 2009 season of western North Pacific tropical cyclone events on intraseasonal timescales. Asia-Pac. J. Atmos. Sci., 47, 305318, https://doi.org/10.1007/s13143-011-0017-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2, https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.

  • Galarneau, T. J., R. McTaggart-Cowan, L. F. Bosart, and C. A. Davis, 2015: Development of North Atlantic tropical disturbances near upper-level potential vorticity streamers. J. Atmos. Sci., 72, 572597, https://doi.org/10.1175/JAS-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West Africa rainfall with Atlantic major hurricanes. J. Climate, 9, 11691187, https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, https://doi.org/10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, https://doi.org/10.1007/BF01277501.

  • Grimit, E. P., and C. F. Mass, 2007: Measuring the ensemble spread–error relationship with a probabilistic approach: Stochastic ensemble results. Mon. Wea. Rev., 135, 203221, https://doi.org/10.1175/MWR3262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403, https://doi.org/10.1175/1520-0469(1993)050<3380:HSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halperin, D. J., H. E. Fuelberg, R. E. Hart, J. H. Cossuth, P. Sura, and R. J. Pasch, 2013: An evaluation of tropical cyclone genesis forecasts from global numerical models. Wea. Forecasting, 28, 14231445, https://doi.org/10.1175/WAF-D-13-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halperin, D. J., H. E. Fuelberg, R. E. Hart, and J. H. Cossuth, 2016: Verification of tropical cyclone genesis forecasts from global numerical models: Comparisons between the North Atlantic and eastern North Pacific basins. Wea. Forecasting, 31, 947955, https://doi.org/10.1175/WAF-D-15-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halperin, D. J., R. E. Hart, H. E. Fuelberg, and J. H. Cossuth, 2017: The development and evaluation of a statistical–dynamical tropical cyclone genesis guidance tool. Wea. Forecasting, 32, 2746, https://doi.org/10.1175/WAF-D-16-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hankes, I., Z. Wang, G. Zhang, and C. L. Fritz, 2015: Merger of African easterly waves and formation of Cape Verde storms. Quart. J. Roy. Meteor. Soc., 141, 13061319, https://doi.org/10.1002/qj.2439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimberlain, T. B., 2010: Tropical cyclone report: Hurricane Danielle, 21-30 August 2010. National Hurricane Center Rep., 16 pp.

  • Kimberlain, T. B., 2014: Tropical cyclone report: Hurricane Fay, 10-13 October 2014. National Hurricane Center Rep., 21 pp.

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., and S. J. Majumdar, 2014: Ensemble-based error and predictability metrics associated with tropical cyclogenesis. Part I: Basinwide perspective. Mon. Wea. Rev., 142, 28792898, https://doi.org/10.1175/MWR-D-13-00370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., and S. J. Majumdar, 2015: Ensemble-based error and predictability metrics associated with tropical cyclogenesis. Part II: Wave-relative framework. Mon. Wea. Rev., 143, 16651686, https://doi.org/10.1175/MWR-D-14-00286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671781, https://doi.org/10.1175/BAMS-88-11-1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, https://doi.org/10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, A., and M. C. Wheeler, 2008: Statistical prediction of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 136, 36373654, https://doi.org/10.1175/2008MWR2426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., and B. Fu, 2006: Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part I: Satellite data analyses. J. Atmos. Sci., 63, 13771389, https://doi.org/10.1175/JAS3692.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., Z. Wang, and M. Peng, 2016: Evaluating tropical cyclone forecasts in the NCEP Global Ensemble Forecasting System (GEFS) Reforecast version 2. Wea. Forecasting, 31, 895916, https://doi.org/10.1175/WAF-D-15-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1965: A new study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321333, https://doi.org/10.3402/tellusa.v17i3.9076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lussier, L. L., III, 2010: A multi-scale analysis of tropical cyclogenesis within the critical layer of tropical easterly waves in the Atlantic and western North Pacific sectors. Ph.D. dissertation, Naval Postgraduate School, 217 pp.

  • Métais, O., J. J. Riley, and M. Lesieur, 1994, Numerical simulations of stably-stratified rotating turbulence. Stably Stratified Flows :Flow and Dispersion over Topography, I. P. Castro and N. J. Rockliff, Eds., Clarendon Press, 139–151.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13, https://ams.confex.com/ams/25HURR/techprogram/paper_37628.htm.

  • McMurdie, L. A., and B. Ancell, 2014: Predictability characteristics of landfalling cyclones along the North American west coast. Mon. Wea. Rev., 142, 301319, https://doi.org/10.1175/MWR-D-13-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., G. D. Deane, L. F. Bosart, C. A. Davis, and T. J. Galarneau, 2008: Climatology of tropical cyclogenesis in the North Atlantic (1948–2004). Mon. Wea. Rev., 136, 12841304, https://doi.org/10.1175/2007MWR2245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, R. W. Moore, and O. Martius, 2013: A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev., 141, 19631989, https://doi.org/10.1175/MWR-D-12-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., L. L. Lussier III, R. W. Moore, and Z. Wang, 2010: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment—Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 98799900, https://doi.org/10.5194/acp-10-9879-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud-systems in the Tropics (PREDICT) Experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172, https://doi.org/10.1175/BAMS-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2010: Assessment of intraseasonal to interannual climate prediction and predictability. National Research Council Rep., 192 pp., https://doi.org/10.17226/12878.

    • Crossref
    • Export Citation
  • Palmer, T. N., 1996: Predictability of the atmosphere and oceans: From days to decades. Decadal Climate Variability: Dynamics and Predictability, D. L. T. Anderson and J. Willebrand, Eds., NATO ASI Series, Vol. 44, Springer, 83–155, https://doi.org/10.1007/978-3-662-03291-6_3.

    • Crossref
    • Export Citation
  • Palmer, T. N., 2006: Predictability of weather and climate: From theory to practice. Predictability of Weather and Climate. T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 1–29.

    • Crossref
    • Export Citation
  • Pasch, R. J., and T. B. Kimberlain, 2011: Tropical cyclone report: Hurricane Igor, 8-21 September 2010. National Hurricane Center Rep., 20 pp.

  • Pytharoulis, I., and C. Thorncroft, 1999: The low-level structure of African easterly waves in 1995. Mon. Wea. Rev., 127, 22662280, https://doi.org/10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333, https://doi.org/10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slade, S. A., and E. D. Maloney, 2013: An intraseasonal prediction model of Atlantic and east Pacific tropical cyclone genesis. Mon. Wea. Rev., 141, 19251942, https://doi.org/10.1175/MWR-D-12-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1969: Problems and promises of deterministic extended range forecasting. Bull. Amer. Meteor. Soc., 50, 286311.

  • Stewart, R. S., 2010: Tropical cyclone report: Tropical Storm Bonnie, 22-24 July 2010. National Hurricane Center Rep., 17 pp.

  • Straus, D. M., and D. Paolino, 2009: Intermediate time error growth and predictability: Tropics versus mid-latitudes. Tellus, 61A, 579586, https://doi.org/10.1111/j.1600-0870.2009.00411.x.

    • Search Google Scholar
    • Export Citation
  • Tsai, H.-C., and R. L. Elsberry, 2013: Opportunities and challenges for extended-range predictions of tropical cyclone impacts on hydrological predictions. J. Hydrol., 506, 4254, https://doi.org/10.1016/j.jhydrol.2012.12.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K., M. Fiorino, C. Landsea, and K. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314, https://doi.org/10.1175/JCLI4074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., and G. Magnusdottir, 2005: ITCZ breakdown in three-dimensional flows. J. Atmos. Sci., 62, 14971512, https://doi.org/10.1175/JAS3409.1.

  • Wang, Z., M. T. Montgomery, and T. Dunkerton, 2010a: Genesis of pre–Hurricane Felix (2007). Part I: The role of the wave critical layer. J. Atmos. Sci., 67, 17111729, https://doi.org/10.1175/2009JAS3420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. Dunkerton, 2010b: Genesis of pre–Hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 17301744, https://doi.org/10.1175/2010JAS3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and C. Fritz, 2012: A first look at the structure of the wave pouch during the 2009 PREDICT–GRIP dry runs over the Atlantic. Mon. Wea. Rev., 140, 11441163, https://doi.org/10.1175/MWR-D-10-05063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., G. Zhang, M. S. Peng, J.-H. Chen, and S.-J. Lin, 2015: Predictability of Atlantic tropical cyclones in the GFDL HiRAM model. Geophys. Res. Lett., 42, 25472554, https://doi.org/10.1002/2015GL063587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Wu, L. G., H. J. Zong, and L. Jia, 2013: Observational analysis of tropical cyclone formation associated with monsoon gyres. J. Atmos. Sci., 70, 10231034, https://doi.org/10.1175/JAS-D-12-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., and Coauthors, 2015a: Beyond weather time-scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Mon. Wea. Rev., 143, 524535, https://doi.org/10.1175/MWR-D-14-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., M. Zhao, X. Jiang, S.-J. Lin, T. Li, X. Fu, and G. Vecchi, 2015b: The 3–4-week MJO predictive skill in a GFDL coupled model. J. Climate, 28, 53515364, https://doi.org/10.1175/JCLI-D-15-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, https://doi.org/10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Z. Wang, 2013: Interannual variability of the Atlantic Hadley circulation in boreal summer and its impacts on tropical cyclone activity. J. Climate, 26, 85298544, https://doi.org/10.1175/JCLI-D-12-00802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., Z. Wang, M. Peng, and G. Magnusdottir, 2017: Characteristics and impacts of extratropical Rossby wave breaking during the Atlantic hurricane season. J. Climate, 30, 23632379, https://doi.org/10.1175/JCLI-D-16-0425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 561 139 6
PDF Downloads 533 106 3