Role of Surface Friction on Shallow Nonprecipitating Convection

Seung-Bu Park Department of Earth and Environmental Engineering, Columbia University, New York, New York, and Institute for Basic Science Center for Climate Physics, Pusan National University, Busan, South Korea

Search for other papers by Seung-Bu Park in
Current site
Google Scholar
PubMed
Close
,
Steven Böing School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Steven Böing in
Current site
Google Scholar
PubMed
Close
, and
Pierre Gentine Department of Earth and Environmental Engineering, and Earth Institute, Columbia University, New York, New York

Search for other papers by Pierre Gentine in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The role of surface friction on shallow nonprecipitating convection is investigated using a series of large-eddy simulations with varying surface friction velocity and with a cloud identification algorithm. As surface friction intensifies, convective rolls dominate over convective cells and secondary overturning circulation becomes stronger in the subcloud layer, thus transporting more moisture upward and more heat downward between the subcloud and cloud layers. Identifying individual clouds, using the identification algorithm based on a three-dimensional topological analysis, reveals that intensified surface friction increases the number of clouds and the degree of tilting in the downstream direction. Highly intensified surface friction increases wind shear across the cloud base and induces cloud tilting, which leads to a vertically parabolic profile of liquid water mixing ratio instead of the classical two-layer structure (conditionally unstable and trade inversion layers). Furthermore, cloud tilting induces more cloud cover and more cloud mass flux much above the cloud base (e.g., 0.8 < z < 1.2 km), but less cloud cover and less cloud mass flux in the upper cloud layer (e.g., z > 1.2 km) because of increased lateral entrainment rate. Similarly, profiles of directly measured entrainment and detrainment rates show that detrainment in the lower cloud layer becomes smaller with stronger surface friction.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seung-Bu Park, sseungbu@gmail.com

Abstract

The role of surface friction on shallow nonprecipitating convection is investigated using a series of large-eddy simulations with varying surface friction velocity and with a cloud identification algorithm. As surface friction intensifies, convective rolls dominate over convective cells and secondary overturning circulation becomes stronger in the subcloud layer, thus transporting more moisture upward and more heat downward between the subcloud and cloud layers. Identifying individual clouds, using the identification algorithm based on a three-dimensional topological analysis, reveals that intensified surface friction increases the number of clouds and the degree of tilting in the downstream direction. Highly intensified surface friction increases wind shear across the cloud base and induces cloud tilting, which leads to a vertically parabolic profile of liquid water mixing ratio instead of the classical two-layer structure (conditionally unstable and trade inversion layers). Furthermore, cloud tilting induces more cloud cover and more cloud mass flux much above the cloud base (e.g., 0.8 < z < 1.2 km), but less cloud cover and less cloud mass flux in the upper cloud layer (e.g., z > 1.2 km) because of increased lateral entrainment rate. Similarly, profiles of directly measured entrainment and detrainment rates show that detrainment in the lower cloud layer becomes smaller with stronger surface friction.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seung-Bu Park, sseungbu@gmail.com
Save
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, H., J. Snoeyink, and U. Axen, 2003: Computing contour trees in all dimensions. Comput. Geom., 24, 7594, https://doi.org/10.1016/S0925-7721(02)00093-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couvreux, F., F. Hourdin, and C. Rio, 2010: Resolved versus parametrized boundary-layer plumes. Part I: A parametrization-oriented conditional sampling in large-eddy simulations. Bound.-Layer Meteor., 134, 441458, https://doi.org/10.1007/s10546-009-9456-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2012: Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm. Atmos. Chem. Phys., 12, 11011119, https://doi.org/10.5194/acp-12-1101-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and A. P. Siebesma, 2008: A simple parameterization for detrainment in shallow cumulus. Mon. Wea. Rev., 136, 560576, https://doi.org/10.1175/2007MWR2201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, https://doi.org/10.1002/qj.1959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esau, I., 2014: Indirect air–sea interactions simulated with a coupled turbulence-resolving model. Ocean Dyn., 64, 689705, https://doi.org/10.1007/s10236-014-0712-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteor., 119, 431447, https://doi.org/10.1007/s10546-006-9048-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., G. Bellon, and C. C. van Heerwaarden, 2015: A closer look at boundary layer inversion in large-eddy simulations and bulk models: Buoyancy-driven case. J. Atmos. Sci., 72, 728749, https://doi.org/10.1175/JAS-D-13-0377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and A. R. Brown, 1999: A similarity hypothesis for shallow-cumulus transports. Quart. J. Roy. Meteor. Soc., 125, 19131936, https://doi.org/10.1002/qj.49712555802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018, https://doi.org/10.1175/2007JAS2322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., and A. Seifert, 2013: Automated tracking of shallow cumulus clouds in large domain, long duration large eddy simulations. Geosci. Model Dev., 6, 12611273, https://doi.org/10.5194/gmd-6-1261-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., H. J. J. Jonker, H. E. A. Van den Akker, E. J. Griffith, M. Koutek, and F. H. Post, 2009: A statistical approach to the life cycle analysis of cumulus clouds selected in a virtual reality environment. J. Geophys. Res., 114, D06208, https://doi.org/10.1029/2008JD010917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, J. Z., and E. M. Rasmusson, 1973: Measurement of the atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean. Mon. Wea. Rev., 101, 4457, https://doi.org/10.1175/1520-0493(1973)101<0044:MOTAME>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. T., P. L. MacKeen, A. Witt, E. D. W. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The Storm Cell Identification and Tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263276, https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., G. Kuhn, J. Schieldge, and C.-I. Hsieh, 1997: The ejection-sweep character of scalar fluxes in the unstable surface layer. Bound.-Layer Meteor., 83, 126, https://doi.org/10.1023/A:1000293516830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-W., S.-U. Park, and C. Moeng, 2003: Entrainment processes in the convective boundary layer with varying wind shear. Bound.-Layer Meteor., 108, 221245, https://doi.org/10.1023/A:1024170229293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-W., S.-U. Park, D. Pino, and J. Vilà-Guerau de Arellano, 2006: Parameterization of entrainment in a sheared convective boundary layer using a first-order jump model. Bound.-Layer Meteor., 120, 455475, https://doi.org/10.1007/s10546-006-9067-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kropfli, R. A., and N. M. Kohn, 1978: Persistent horizontal rolls in the urban mixed layer as revealed by dual-Doppler radar. J. Appl. Meteor., 17, 669676, https://doi.org/10.1175/1520-0450(1978)017<0669:PHRITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhn, A., and S. Trömel, 2015: Intercomparison study of cloud feature extraction and tracking algorithms. Geophysical Research Abstracts, Vol. 17, Abstract 14128, http://meetingorganizer.copernicus.org/EGU2015/EGU2015-14128.pdf.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and R. I. Sykes, 1982: A two-dimensional numerical study of horizontal roll vortices in an inversion capped planetary boundary layer. Quart. J. Roy. Meteor. Soc., 108, 801823, https://doi.org/10.1002/qj.49710845805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, 2007: Modification of the atmospheric boundary layer by a small island: Observations from Nauru. Mon. Wea. Rev., 135, 891905, https://doi.org/10.1175/MWR3319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuijens, L., B. Medeiros, I. Sandu, and M. Ahlgrimm, 2015: The behavior of trade-wind cloudiness in observations and models: The major cloud components and their variability. J. Adv. Model. Earth Syst., 7, 600616, https://doi.org/10.1002/2014MS000390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-B., and J.-J. Baik, 2014: Large-eddy simulations of convective boundary layers over flat and urbanlike surfaces. J. Atmos. Sci., 71, 18801892, https://doi.org/10.1175/JAS-D-13-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-B., P. Gentine, K. Schneider, and M. Farge, 2016: Coherent structures in the boundary and cloud layers: Role of updrafts, subsiding shells, and environmental subsidence. J. Atmos. Sci., 73, 17891814, https://doi.org/10.1175/JAS-D-15-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, R. H. Shaw, J. J. Finnigan, and J. C. Weil, 2015: Atmospheric stability influences on coupled boundary layer and canopy turbulence. J. Atmos. Sci., 73, 16211647, https://doi.org/10.1175/JAS-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pino, D., J. Vilà-Guerau de Arellano, and P. G. Duynkerke, 2003: The contribution of shear to the evolution of a convective boundary layer. J. Atmos. Sci., 60, 19131926, https://doi.org/10.1175/1520-0469(2003)060<1913:TCOSTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pino, D., J. Vilà-Guerau de Arellano, and S.-W. Kim, 2006: Representing sheared convective boundary layer by zeroth- and first-order-jump mixed-layer models: Large-eddy simulation verification. J. Appl. Meteor. Climatol., 45, 12241243, https://doi.org/10.1175/JAM2396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 1981: Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech., 108, 363382, https://doi.org/10.1017/S0022112081002164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499, https://doi.org/10.1175/2007JCLI1789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927, https://doi.org/10.1175/2010JAS3371.1.

  • Salesky, S. T., M. Chamecki, and E. Bou-Zeid, 2016: On the nature of the transition between roll and cellular organization in the convective boundary layer. Bound.-Layer Meteor., 163, 4168, https://doi.org/10.1007/s10546-016-0220-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., P. Bechtold, I. Sandu, and M. Ahlgrimm, 2017: Uncertainties related to the representation of momentum transport in shallow convection. J. Adv. Model. Earth Syst., 9, 12691291, https://doi.org/10.1002/2017MS000915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52, 650666, https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and A. Seifert, 2008: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteor. Soc. Japan, 86A, 143162, https://doi.org/10.2151/jmsj.86A.143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., C.-H. Moeng, and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 39633984, https://doi.org/10.1175/1520-0469(1999)056<3963:LESORD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, https://doi.org/10.1175/MWR2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sullivan, P. P., C.-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064, https://doi.org/10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and E. G. Patton, 2014: Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves. J. Atmos. Sci., 71, 40014027, https://doi.org/10.1175/JAS-D-14-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sykes, R. I., and D. S. Henn, 1989: Large-eddy simulation of turbulent sheared convection. J. Atmos. Sci., 46, 11061118, https://doi.org/10.1175/1520-0469(1989)046<1106:LESOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, Z., T. Schneider, J. Teixeira, and K. G. Pressel, 2016: Large-eddy simulation of subtropical cloud-topped boundary layers: 1. A forcing framework with closed surface energy balance. J. Adv. Model. Earth Syst., 8, 15651585, https://doi.org/10.1002/2016MS000655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., T. Horst, and J. Wilson, 1999: An observational study of the evolution of horizontal convective rolls. Mon. Wea. Rev., 127, 21602179, https://doi.org/10.1175/1520-0493(1999)127<2160:AOSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, M., and C. Yang, 2017: A 3D multi-threshold, region-growing algorithm for identifying dust storm features from model simulations. Int. J. Geogr. Inf. Sci., 31, 939961, https://doi.org/10.1080/13658816.2016.1250900.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 402 97 7
PDF Downloads 318 43 3