Turbulence Effects of Collision Efficiency and Broadening of Droplet Size Distribution in Cumulus Clouds

Sisi Chen McGill University, Montreal, Quebec, Canada

Search for other papers by Sisi Chen in
Current site
Google Scholar
PubMed
Close
,
M. K. Yau McGill University, Montreal, Quebec, Canada

Search for other papers by M. K. Yau in
Current site
Google Scholar
PubMed
Close
, and
Peter Bartello McGill University, Montreal, Quebec, Canada

Search for other papers by Peter Bartello in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper aims to investigate and quantify the turbulence effect on droplet collision efficiency and explore the broadening mechanism of the droplet size distribution (DSD) in cumulus clouds. The sophisticated model employed in this study individually traces droplet motions affected by gravity, droplet disturbance flows, and turbulence in a Lagrangian frame. Direct numerical simulation (DNS) techniques are implemented to resolve the small-scale turbulence. Collision statistics for cloud droplets of radii between 5 and 25 μm at five different turbulence dissipation rates (20–500 cm2 s−3) are computed and compared with pure-gravity cases. The results show that the turbulence enhancement of collision efficiency highly depends on the r ratio (defined as the radius ratio of collected and collector droplets r/R) but is less sensitive to the size of the collector droplet investigated in this study. Particularly, the enhancement is strongest among comparable-sized collisions, indicating that turbulence can significantly broaden the narrow DSD resulting from condensational growth. Finally, DNS experiments of droplet growth by collision–coalescence in turbulence are performed for the first time in the literature to further illustrate this hypothesis and to monitor the appearance of drizzle in the early rain-formation stage. By comparing the resulting DSDs at different turbulence intensities, it is found that broadening is most pronounced when turbulence is strongest and similar-sized collisions account for 21%–24% of total collisions in turbulent cases compared with only 9% in the gravitational case.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sisi Chen, sisi.chen@mail.mcgill.ca

Abstract

This paper aims to investigate and quantify the turbulence effect on droplet collision efficiency and explore the broadening mechanism of the droplet size distribution (DSD) in cumulus clouds. The sophisticated model employed in this study individually traces droplet motions affected by gravity, droplet disturbance flows, and turbulence in a Lagrangian frame. Direct numerical simulation (DNS) techniques are implemented to resolve the small-scale turbulence. Collision statistics for cloud droplets of radii between 5 and 25 μm at five different turbulence dissipation rates (20–500 cm2 s−3) are computed and compared with pure-gravity cases. The results show that the turbulence enhancement of collision efficiency highly depends on the r ratio (defined as the radius ratio of collected and collector droplets r/R) but is less sensitive to the size of the collector droplet investigated in this study. Particularly, the enhancement is strongest among comparable-sized collisions, indicating that turbulence can significantly broaden the narrow DSD resulting from condensational growth. Finally, DNS experiments of droplet growth by collision–coalescence in turbulence are performed for the first time in the literature to further illustrate this hypothesis and to monitor the appearance of drizzle in the early rain-formation stage. By comparing the resulting DSDs at different turbulence intensities, it is found that broadening is most pronounced when turbulence is strongest and similar-sized collisions account for 21%–24% of total collisions in turbulent cases compared with only 9% in the gravitational case.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sisi Chen, sisi.chen@mail.mcgill.ca
Save
  • Ayala, O., W. W. Grabowski, and L.-P. Wang, 2007: A hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles. J. Comput. Phys., 225, 5173, https://doi.org/10.1016/j.jcp.2006.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala, O., B. Rosa, L.-P. Wang, and W.W. Grabowski, 2008a: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J. Phys., 10, 075015, https://doi.org/10.1088/1367-2630/10/7/075015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala, O., B. Rosa, and L.-P. Wang, 2008b: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization. New J. Phys., 10, 075016, https://doi.org/10.1088/1367-2630/10/7/075016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala, O., H. Parishani, L. Chen, B. Rosa, and L.-P. Wang, 2014: DNS of hydrodynamically interacting droplets in turbulent clouds: Parallel implementation and scalability analysis using 2D domain decomposition. Comput. Phys. Commun., 185, 32693290, https://doi.org/10.1016/j.cpc.2014.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., P. Bartello, M. K. Yau, P. A. Vaillancourt, and K. Zwijsen, 2016: Cloud droplet collisions in turbulent environment: Collision statistics and parameterization. J. Atmos. Sci., 73, 621636, https://doi.org/10.1175/JAS-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Almeida, F. C., 1979: The collisional problem of cloud droplets moving in a turbulent environment—Part II: Turbulent collision efficiencies. J. Atmos. Sci., 36, 15641576, https://doi.org/10.1175/1520-0469(1979)036<1564:TCPOCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., 2008: A warm rain microphysics parameterization that includes the effect of turbulence. J. Atmos. Sci., 65, 17951816, https://doi.org/10.1175/2007JAS2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., P. A. Vaillancourt, M. K. Yau, and P. Bartello, 2005: Collision rates of cloud droplets in turbulent flow. J. Atmos. Sci., 62, 24512466, https://doi.org/10.1175/JAS3493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., P. A. Vaillancourt, and M. K. Yau, 2007: Statistics and parameterizations of the effect of turbulence on the geometric collision kernel of cloud droplets. J. Atmos. Sci., 64, 938954, https://doi.org/10.1175/JAS3872.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, https://doi.org/10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507, https://doi.org/10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonas, P., 1996: Turbulence and cloud microphysics. Atmos. Res., 40, 283306, https://doi.org/10.1016/0169-8095(95)00035-6.

  • Khain, A., T. V. Prabha, N. Benmoshe, G. Pandithurai, and M. Ovchinnikov, 2013: The mechanism of first raindrops formation in deep convective clouds. J. Geophys. Res. Atmos., 118, 91239140, https://doi.org/10.1002/jgrd.50641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koziol, A. S., and H. G. Leighton, 1996: The effect of turbulence on the collision rates of small cloud drops. J. Atmos. Sci., 53, 19101920, https://doi.org/10.1175/1520-0469(1996)053<1910:TEOTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onishi, R., K. Takahashi, and J. Vassilicos, 2013: An efficient parallel simulation of interacting inertial particles in homogeneous isotropic turbulence. J. Comput. Phys., 242, 809827, https://doi.org/10.1016/j.jcp.2013.02.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orszag, S.A., 1969: Numerical methods for the simulation of turbulence. Phys. Fluids, 12, II-250, https://dx.doi.org/10.1063/1.1692445.

  • Pinsky, M. B., and A. P. Khain, 1997: Turbulence effects on droplet growth and size distribution in clouds—A review. J. Aerosol Sci., 28, 11771214, https://doi.org/10.1016/S0021-8502(97)00005-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., and A. P. Khain, 2004: Collisions of small drops in a turbulent flow. Part II: Effects of flow accelerations. J. Atmos. Sci., 61, 19261939, https://doi.org/10.1175/1520-0469(2004)061<1926:COSDIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. P. Khain, and M. Shapiro, 2007: Collisions of cloud droplets in a turbulent flow. Part IV: Droplet hydrodynamic interaction. J. Atmos. Sci., 64, 24622482, https://doi.org/10.1175/JAS3952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. P. Khain, and H. Krugliak, 2008: Collisions of cloud droplets in a turbulent flow. Part V: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci., 65, 357374, https://doi.org/10.1175/2007JAS2358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H., and J. Klett, 1997: Microphysics of Clouds and Precipitation: With an Introduction to Cloud Chemistry and Cloud Electricity. 2nd ed. Kluwer Academic, 954 pp.

  • Raga, G. B., J. B. Jensen, and M. B. Baker, 1990: Characteristics of cumulus band clouds off the coast of Hawaii. J. Atmos. Sci., 47, 338356, https://doi.org/10.1175/1520-0469(1990)047<0338:COCBCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, N., and A. S. Wexler, 2005: Droplets to drops by turbulent coagulation. J. Atmos. Sci., 62, 19621975, https://doi.org/10.1175/JAS3431.1.

  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Butterworth-Heinemann, 290 pp.

  • Rosa, B., L.-P. Wang, M. Maxey, and W. Grabowski, 2011: An accurate and efficient method for treating aerodynamic interactions of cloud droplets. J. Comput. Phys., 230, 81098133, https://doi.org/10.1016/j.jcp.2011.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., and Coauthors, 2013: The fine-scale structure of the trade wind cumuli over Barbados—An introduction to the CARRIBA project. Atmos. Chem. Phys., 13, 10 06110 077, https://doi.org/10.5194/acp-13-10061-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2016: The Barbados Cloud Observatory: Anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull. Amer. Meteor. Soc., 97, 787801, https://doi.org/10.1175/BAMS-D-14-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, N. P., S. Mahalingam, and R. M. Kerr, 1994: Deterministic forcing of homogeneous, isotropic turbulence. Phys. Fluids, 6, 16121614, https://dx.doi.org/10.1063/1.868274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., and M. K. Yau, 2000: Review of particle turbulence interactions and consequences for cloud physics. Bull. Amer. Meteor. Soc., 81, 285298, https://doi.org/10.1175/1520-0477(2000)081<0285:ROPIAC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., M. K. Yau, and W. W. Grabowski, 2001: Microscopic approach to cloud droplet growth by condensation. Part I: Model description and results without turbulence. J. Atmos. Sci., 58, 19451964, https://doi.org/10.1175/1520-0469(2001)058<1945:MATCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., A. S. Wexler, and Y. Zhou, 2000: Statistical mechanical description and modelling of turbulent collision of inertial particles. J. Fluid Mech., 415, 117153, https://doi.org/10.1017/S0022112000008661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., O. Ayala, and W. W. Grabowski, 2005a: Improved formulations of the superposition method. J. Atmos. Sci., 62, 12551266, https://doi.org/10.1175/JAS3397.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., O. Ayala, S. E. Kasprzak, and W. W. Grabowski, 2005b: Theoretical formulation of collision rate and collision efficiency of hydrodynamically interacting cloud droplets in turbulent atmosphere. J. Atmos. Sci., 62, 24332450, https://doi.org/10.1175/JAS3492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., O. Ayala, B. Rosa, and W. W. Grabowski, 2008: Turbulent collision efficiency of heavy particles relevant to cloud droplets. New J. Phys., 10, 075013, https://doi.org/10.1088/1367-2630/10/7/075013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., L.-P. Wang, and W. W. Grabowski, 2008: Growth of cloud droplets by turbulent collision coalescence. J. Atmos. Sci., 65, 331356, https://doi.org/10.1175/2007JAS2406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., A. S. Wexler, and L.-P. Wang, 2001: Modelling turbulent collision of bidisperse inertial particles. J. Fluid Mech., 433, 77104, https://doi.org/10.1017/S0022112000003372.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1280 337 17
PDF Downloads 1117 229 11