Influence of Microphysical Variability on Stochastic Condensation in a Turbulent Laboratory Cloud

N. Desai Atmospheric Sciences Program, and Department of Physics, Michigan Technological University, Houghton, Michigan

Search for other papers by N. Desai in
Current site
Google Scholar
PubMed
Close
,
K. K. Chandrakar Atmospheric Sciences Program, and Department of Physics, Michigan Technological University, Houghton, Michigan

Search for other papers by K. K. Chandrakar in
Current site
Google Scholar
PubMed
Close
,
K. Chang Atmospheric Sciences Program, and Department of Physics, Michigan Technological University, Houghton, Michigan

Search for other papers by K. Chang in
Current site
Google Scholar
PubMed
Close
,
W. Cantrell Atmospheric Sciences Program, and Department of Physics, Michigan Technological University, Houghton, Michigan

Search for other papers by W. Cantrell in
Current site
Google Scholar
PubMed
Close
, and
R. A. Shaw Atmospheric Sciences Program, and Department of Physics, Michigan Technological University, Houghton, Michigan

Search for other papers by R. A. Shaw in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Diffusional growth of droplets by stochastic condensation and a resulting broadening of the size distribution has been considered as a mechanism for bridging the cloud droplet growth gap between condensation and collision–coalescence. Recent studies have shown that supersaturation fluctuations can lead to a broadening of the droplet size distribution at the condensational stage of droplet growth. However, most studies using stochastic models assume the phase relaxation time of a cloud parcel to be constant. In this paper, two questions are asked: how variability in droplet number concentration and radius influence the phase relaxation time and what effect it has on the droplet size distributions. To answer these questions, steady-state cloud conditions are created in the laboratory and digital inline holography is used to directly observe the variations in local number concentration and droplet size distribution and, thereby, the integral radius. Stochastic equations are also extended to account for fluctuations in integral radius and obtain new terms that are compared with the laboratory observations. It is found that the variability in integral radius is primarily driven by variations in the droplet number concentration and not the droplet radius. This variability does not contribute significantly to the mean droplet growth rate but does contribute significantly to the rate of increase of the size distribution width.

Current affiliation: Department of Physics, University of Gothenburg, Gothenburg, Sweden.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Raymond Shaw, rashaw@mtu.edu

Abstract

Diffusional growth of droplets by stochastic condensation and a resulting broadening of the size distribution has been considered as a mechanism for bridging the cloud droplet growth gap between condensation and collision–coalescence. Recent studies have shown that supersaturation fluctuations can lead to a broadening of the droplet size distribution at the condensational stage of droplet growth. However, most studies using stochastic models assume the phase relaxation time of a cloud parcel to be constant. In this paper, two questions are asked: how variability in droplet number concentration and radius influence the phase relaxation time and what effect it has on the droplet size distributions. To answer these questions, steady-state cloud conditions are created in the laboratory and digital inline holography is used to directly observe the variations in local number concentration and droplet size distribution and, thereby, the integral radius. Stochastic equations are also extended to account for fluctuations in integral radius and obtain new terms that are compared with the laboratory observations. It is found that the variability in integral radius is primarily driven by variations in the droplet number concentration and not the droplet radius. This variability does not contribute significantly to the mean droplet growth rate but does contribute significantly to the rate of increase of the size distribution width.

Current affiliation: Department of Physics, University of Gothenburg, Gothenburg, Sweden.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Raymond Shaw, rashaw@mtu.edu
Save
  • Baker, M., and J. Latham, 1979: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds. J. Atmos. Sci., 36, 16121615, https://doi.org/10.1175/1520-0469(1979)036<1612:TEODSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartlett, J., and P. Jonas, 1972: On the dispersion of the sizes of droplets growing by condensation in turbulent clouds. Quart. J. Roy. Meteor. Soc., 98, 150164, https://doi.org/10.1002/qj.49709841512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beals, M. J., J. P. Fugal, R. A. Shaw, J. Lu, S. M. Spuler, and J. L. Stith, 2015: Holographic measurements of inhomogeneous cloud mixing at the centimeter scale. Science, 350, 8790, https://doi.org/10.1126/science.aab0751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and L. Chaumat, 2001: Droplet spectra broadening in cumulus clouds. Part I: Broadening in adiabatic cores. J. Atmos. Sci., 58, 628641, https://doi.org/10.1175/1520-0469(2001)058<0628:DSBICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. Cantrell, K. Chang, D. Ciochetto, D. Niedermeier, M. Ovchinnikov, R. A. Shaw, and F. Yang, 2016: Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions. Proc. Natl. Acad. Sci. USA, 113, 14 24314 248, https://doi.org/10.1073/pnas.1612686113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, K., and Coauthors, 2016: A laboratory facility to study gas–aerosol–cloud interactions in a turbulent environment: The Π chamber. Bull. Amer. Meteor. Soc., 97, 23432358, https://doi.org/10.1175/BAMS-D-15-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 13011311, https://doi.org/10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P., A. Hill, K. Furtado, and A. Korolev, 2014: Mixed-phase clouds in a turbulent environment. Part 2: Analytic treatment. Quart. J. Roy. Meteor. Soc., 140, 870880, https://doi.org/10.1002/qj.2175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fugal, J. P., R. A. Shaw, E. W. Saw, and A. V. Sergeyev, 2004: Airborne digital holographic system for cloud particle measurements. Appl. Opt., 43, 59875995, https://doi.org/10.1364/AO.43.005987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardiner, C. W., 1985: Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences. 2nd ed. Springer-Verlag, 442 pp.

    • Crossref
    • Export Citation
  • Gerber, H., 1991: Supersaturation and droplet spectral evolution in fog. J. Atmos. Sci., 48, 25692588, https://doi.org/10.1175/1520-0469(1991)048<2569:SADSEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, https://doi.org/10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and G. C. Abade, 2017: Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations. J. Atmos. Sci., 74, 14851493, https://doi.org/10.1175/JAS-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henneberger, J., J. Fugal, O. Stetzer, and U. Lohmann, 2013: Holimo II: A digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds. Atmos. Meas. Tech., 6, 29752987, https://doi.org/10.5194/amt-6-2975-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, K., 2010: Stochastic Processes for Physicists: Understanding Noisy Systems. Cambridge University Press, 204 pp.

    • Crossref
    • Export Citation
  • Jeffery, C. A., J. M. Reisner, and M. Andrejczuk, 2007: Another look at stochastic condensation for subgrid cloud modeling: Adiabatic evolution and effects. J. Atmos. Sci., 64, 39493969, https://doi.org/10.1175/2006JAS2147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 1999: Toward the theory of stochastic condensation in clouds. Part I: A general kinetic equation. J. Atmos. Sci., 56, 39853996, https://doi.org/10.1175/1520-0469(1999)056<3985:TTTOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2000: Drop growth due to high supersaturation caused by isobaric mixing. J. Atmos. Sci., 57, 16751685, https://doi.org/10.1175/1520-0469(2000)057<1675:DGDTHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., M. Pinsky, and A. Khain, 2013: A new mechanism of droplet size distribution broadening during diffusional growth. J. Atmos. Sci., 70, 20512071, https://doi.org/10.1175/JAS-D-12-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanotte, A. S., A. Seminara, and F. Toschi, 2009: Cloud droplet growth by condensation in homogeneous isotropic turbulence. J. Atmos. Sci., 66, 16851697, https://doi.org/10.1175/2008JAS2864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131, 195220, https://doi.org/10.1256/qj.03.199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., J. P. Fugal, H. Nordsiek, E. W. Saw, R. A. Shaw, and W. Yang, 2008: Lagrangian particle tracking in three dimensions via single-camera in-line digital holography. New J. Phys., 10, 125013, https://doi.org/10.1088/1367-2630/10/12/125013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M., 1979: On the broadening of a droplet distribution by turbulence near cloud base. Quart. J. Roy. Meteor. Soc., 105, 899914, https://doi.org/10.1002/qj.49710544613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazin, I., and V. Smirnoff, 1969: On the theory of cloud drop size spectrum formation by stochastic condensation. Tr. Tsentr. Aerol. Obs., 89, 9294.

    • Search Google Scholar
    • Export Citation
  • Mazin, I., and V. Merkulovich, 2008: Stochastic condensation and its possible role in liquid cloud microstructure formation. Some Problems of Cloud Physics, Russian Academy of Science, 217–267.

  • Paoli, R., and K. Shariff, 2009: Turbulent condensation of droplets: Direct simulation and a stochastic model. J. Atmos. Sci., 66, 723740, https://doi.org/10.1175/2008JAS2734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., 1993: A study of the broadening of droplet size distributions in cumuli. J. Atmos. Sci., 50, 22302244, https://doi.org/10.1175/1520-0469(1993)050<2230:ASOTBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2001: Turbulent Flows. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • Rogers, R., and M. Yau, 1989: A Short Course in Cloud Physics. Butterworth-Heinemann, 293 pp.

  • Sardina, G., F. Picano, L. Brandt, and R. Caballero, 2015: Continuous growth of droplet size variance due to condensation in turbulent clouds. Phys. Rev. Lett., 115, 184501, https://doi.org/10.1103/PhysRevLett.115.184501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., 2003: Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35, 183227, https://doi.org/10.1146/annurev.fluid.35.101101.161125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., W. C. Reade, L. R. Collins, and J. Verlinde, 1998: Preferential concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra. J. Atmos. Sci., 55, 19651976, https://doi.org/10.1175/1520-0469(1998)055<1965:PCOCDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siewert, C., J. Bec, and G. Krstulovic, 2017: Statistical steady state in turbulent droplet condensation. J. Fluid Mech., 810, 254280, https://doi.org/10.1017/jfm.2016.712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R., 1989: Growth of cloud drops by condensation: A criticism of currently accepted theory and a new approach. J. Atmos. Sci., 46, 869887, https://doi.org/10.1175/1520-0469(1989)046<0869:GOCDBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P., M. Yau, P. Bartello, and W. Grabowski, 2002: Microscopic approach to cloud droplet growth by condensation. Part II: Turbulence, clustering, and condensational growth. J. Atmos. Sci., 59, 34213435, https://doi.org/10.1175/1520-0469(2002)059<3421:MATCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 406 pp.

    • Crossref
    • Export Citation
  • Yang, F., M. Ovchinnikov, and R. A. Shaw, 2014: Microphysical consequences of the spatial distribution of ice nucleation in mixed-phase stratiform clouds. Geophys. Res. Lett., 41, 52805287, https://doi.org/10.1002/2014GL060657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., M. Ovchinnikov, and R. A. Shaw, 2015: Long-lifetime ice particles in mixed-phase stratiform clouds: Quasi-steady and recycled growth. J. Geophys. Res. Atmos., 120, 11 61711 635, https://doi.org/10.1002/2015JD023679.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 529 148 8
PDF Downloads 517 121 5