Azimuthal Distribution of Deep Convection, Environmental Factors, and Tropical Cyclone Rapid Intensification: A Perspective from HWRF Ensemble Forecasts of Hurricane Edouard (2014)

Hua Leighton NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Hua Leighton in
Current site
Google Scholar
PubMed
Close
,
Sundararaman Gopalakrishnan NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Sundararaman Gopalakrishnan in
Current site
Google Scholar
PubMed
Close
,
Jun A. Zhang NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
,
Robert F. Rogers NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Robert F. Rogers in
Current site
Google Scholar
PubMed
Close
,
Zhan Zhang NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Zhan Zhang in
Current site
Google Scholar
PubMed
Close
, and
Vijay Tallapragada NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Vijay Tallapragada in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Forecasts from the operational Hurricane Weather Research and Forecasting (HWRF)-based ensemble prediction system for Hurricane Edouard (2014) are analyzed to study the differences in both the tropical cyclone inner-core structure and large-scale environment between rapidly intensifying (RI) and nonintensifying (NI) ensemble members. An analysis of the inner-core structure reveals that as deep convection wraps around from the downshear side of the storm to the upshear-left quadrant for RI members, vortex tilt and asymmetry reduce rapidly, and rapid intensification occurs. For NI members, deep convection stays trapped in the downshear/downshear-right quadrant, and storms do not intensify. The budget calculation of tangential wind tendency reveals that the positive radial eddy vorticity flux for RI members contributes significantly to spinning up the tangential wind in the middle and upper levels and reduces vortex tilt. The negative eddy vorticity flux for NI members spins down the tangential wind in the middle and upper levels and does not help the vortex become vertically aligned. An analysis of the environmental flow shows that the cyclonic component of the storm-relative upper-level environmental flow in the left-of-shear quadrants aids the cyclonic propagation of deep convection and helps establish the configuration that leads to the positive radial vorticity flux for RI members. In contrast, the anticyclonic component of the storm-relative mid- and upper-level environmental flow in the left-of-shear quadrants inhibits the cyclonic propagation of deep convection and suppresses the positive radial eddy vorticity flux for NI members. Environmental moisture in the downshear-right quadrant is also shown to be important for the formation of deep convection for RI members.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hua Leighton, hua.leighton@noaa.gov

Abstract

Forecasts from the operational Hurricane Weather Research and Forecasting (HWRF)-based ensemble prediction system for Hurricane Edouard (2014) are analyzed to study the differences in both the tropical cyclone inner-core structure and large-scale environment between rapidly intensifying (RI) and nonintensifying (NI) ensemble members. An analysis of the inner-core structure reveals that as deep convection wraps around from the downshear side of the storm to the upshear-left quadrant for RI members, vortex tilt and asymmetry reduce rapidly, and rapid intensification occurs. For NI members, deep convection stays trapped in the downshear/downshear-right quadrant, and storms do not intensify. The budget calculation of tangential wind tendency reveals that the positive radial eddy vorticity flux for RI members contributes significantly to spinning up the tangential wind in the middle and upper levels and reduces vortex tilt. The negative eddy vorticity flux for NI members spins down the tangential wind in the middle and upper levels and does not help the vortex become vertically aligned. An analysis of the environmental flow shows that the cyclonic component of the storm-relative upper-level environmental flow in the left-of-shear quadrants aids the cyclonic propagation of deep convection and helps establish the configuration that leads to the positive radial vorticity flux for RI members. In contrast, the anticyclonic component of the storm-relative mid- and upper-level environmental flow in the left-of-shear quadrants inhibits the cyclonic propagation of deep convection and suppresses the positive radial eddy vorticity flux for NI members. Environmental moisture in the downshear-right quadrant is also shown to be important for the formation of deep convection for RI members.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hua Leighton, hua.leighton@noaa.gov
Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 21252137, https://doi.org/10.1175/1520-0469(1983)040<2125:MACSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., R. Rotunno, and Y. Chen, 2010: The effects of turbulence on hurricane intensity. 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 8C.7, https://ams.confex.com/ams/29Hurricanes/techprogram/paper_167282.htm.

  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, https://doi.org/10.1175/JAS-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., D.-L. Zhang, J. Carton, and R. Atlas, 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885901, https://doi.org/10.1175/WAF-D-11-00001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, K. K. W., 2004: Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific. J. Climate, 17, 466484, https://doi.org/10.1175/1520-0442(2004)017<0466:LEPAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762087, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994a: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 13241334, https://doi.org/10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994b: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advancements in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 2005: An efficient mixed-phase cloud precipitation scheme for use in operational NWP models. Eos, Trans. Amer. Geophys. Union, 86 (Joint Assembly Suppl.), Abstract A42A-02.

  • Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144, 21552175, https://doi.org/10.1175/MWR-D-15-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks, X. Zhang, J.-W. Bao, K.-S. Yeh, and R. Atlas, 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 17621784, https://doi.org/10.1175/2010MWR3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., and Coauthors, 2012: Hurricane Weather Research and Forecasting (HWRF) Model: 2012 scientific documentation. HWRF Development Testbed Center Tech. Rep., 96 pp., https://dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFScientificDocumentation_v3.4a.pdf.

  • Gopalakrishnan, S. G., F. Marks, J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, https://doi.org/10.1175/JAS-D-11-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., C. V. Srinavas, and K. Bhatia, 2016: The hurricane boundary layer. Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Predictions, U. C. Mohanty and S. G. Gopalakrishnan, Eds., Springer Netherlands, 589–626, https://doi.org/10.5822/978-94-024-0896-6.

    • Crossref
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, https://doi.org/10.1175/WAF-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, and F. Chen, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104, 19 56919 585, https://doi.org/10.1029/1999JD900232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y. C., S. Lord, B. Lapenta, V. Tallapragada, Q. Liu, and Z. Zhang, 2010: Sensitivity of air-sea exchange coefficients (Cd and Ch) on hurricane intensity. 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 13C.1, https://ams.confex.com/ams/29Hurricanes/techprogram/paper_167760.htm.

  • Liu, Q., N. Surgi, S. Lord, W.-S. Wu, D. Parrish, S. Gopalakrishnan, J. Waldrop, and J. Gamache, 2006: Hurricane initialization in HWRF model. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 8A.2, https://ams.confex.com/ams/27Hurricanes/techprogram/paper_108496.htm.

  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 16781687, https://doi.org/10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885, https://doi.org/10.1175/2010MWR3378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Dodge, D. Vollaro, K. L. Corbosiero, and F. Marks Jr., 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341354, https://doi.org/10.1175/JAS3591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55, 31763207, https://doi.org/10.1175/1520-0469(1998)055<3176:TCVCFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. J., 64, 3766, https://doi.org/10.22499/2.6401.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., F. Zhang, and D. P. Stern, 2013: Predictability and dynamics of a nonintensifying tropical storm: Erika (2009). J. Atmos. Sci., 70, 25052524, https://doi.org/10.1175/JAS-D-12-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, L., and J. Molinari, 2015: Simulation of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 72, 45294551, https://doi.org/10.1175/JAS-D-15-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, M. C., M. J. Reeder, N. E. Davidson, R. K. Smith, and M. T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Quart. J. Roy. Meteor. Soc., 137, 829844, https://doi.org/10.1002/qj.823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point downscaling. J. Adv. Model. Earth Syst., 3, M08001, https://doi.org/10.1029/2011MS000063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers, and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 1–36.

  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, https://doi.org/10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2014: Environmental helicity and its effects on development and intensification of tropical cyclones. J. Atmos. Sci., 71, 43084320, https://doi.org/10.1175/JAS-D-14-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2016: Tropical cyclone–relative environmental helicity and the pathways to intensification in shear. J. Atmos. Sci., 73, 869890, https://doi.org/10.1175/JAS-D-15-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369380, https://doi.org/10.2151/jmsj1965.60.1_369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., M. T. Montgomery, J. McWilliams, and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 29912 341, https://doi.org/10.5194/acp-13-12299-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, N., D.-L. Zhang, and Y. Li, 2016: A statistical analysis of steady eyewall sizes associated with rapidly intensifying hurricanes. Wea. Forecasting, 31, 737742, https://doi.org/10.1175/WAF-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, https://doi.org/10.1175/2008MWR2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. Davis, 2016a: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part I: Katia (2011). J. Atmos. Sci., 73, 7193, https://doi.org/10.1175/JAS-D-15-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. Davis, 2016b: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part II: Ophelia (2011). J. Atmos. Sci., 73, 15551575, https://doi.org/10.1175/JAS-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 20812086, https://doi.org/10.1002/qj.2804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in a Hurricane Weather Research and Forecasting simulation of Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 143, 293308, https://doi.org/10.1002/qj.2922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2014: Tropical cyclone report on Hurricane Edouard (AL062014). National Hurricane Center Rep., 19 pp., http://www.nhc.noaa.gov/data/tcr/AL062014_Edouard.pdf.

  • Tallapragada, V., C. Kieu, Y. Kwon, S. Trahan, Q. Liu, Z. Zhang, and I.-H. Kwon, 2014: Evaluation of storm structure from the operational HWRF during 2012 implementation. Mon. Wea. Rev., 142, 43084325, https://doi.org/10.1175/MWR-D-13-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, C., and H. Jiang, 2015: Distributions of shallow to very deep precipitation–convection in rapidly intensifying tropical cyclones. J. Climate, 28, 87918824, https://doi.org/10.1175/JCLI-D-14-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst., 6, 384404, https://doi.org/10.1002/2014MS000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1981: A numerical study on the effects of environmental flow on tropical storm genesis. Mon. Wea. Rev., 109, 24872506, https://doi.org/10.1175/1520-0493(1981)109<2487:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, https://doi.org/10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., T. Zoltan, R. Wobus, Y. Zhu, and C. H. Bishop, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, https://doi.org/10.1111/j.1600-0870.2007.00273.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2008: Improving the ocean initialization of coupled hurricane–ocean models using feature-based data assimilation. Mon. Wea. Rev., 136, 25922607, https://doi.org/10.1175/2007MWR2166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Wang, and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64, 11651188, https://doi.org/10.1175/JAS3971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J. G., H. Jiang, G. R. Alvey, E. J. Zipser, R. F. Rogers, J. A. Zhang, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Wea. Rev., 144, 33333354, https://doi.org/10.1175/MWR-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.

  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, https://doi.org/10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks, 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, https://doi.org/10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, and V. Tallapragada, 2017: Impact of parameterized boundary layer structure on tropical cyclone rapid intensification forecasts in HWRF. Mon. Wea. Rev., 145, 14131426, https://doi.org/10.1175/MWR-D-16-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., V. Tallapragada, C. Kieu, S. Trahan, and W. Wang, 2014: HWRF based ensemble prediction system using perturbations from GEFS and stochastic convective trigger function. Trop. Cyclone Res. Rev., 3, 145161, https://doi.org/10.6057/2014TCRR03.02.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1273 459 15
PDF Downloads 784 142 8