New Treatment of Strongly Anisotropic Scattering Phase Functions: The Delta-M+ Method

Zhenyi Lin Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Zhenyi Lin in
Current site
Google Scholar
PubMed
Close
,
Nan Chen Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Nan Chen in
Current site
Google Scholar
PubMed
Close
,
Yongzhen Fan Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Yongzhen Fan in
Current site
Google Scholar
PubMed
Close
,
Wei Li Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Wei Li in
Current site
Google Scholar
PubMed
Close
,
Knut Stamnes Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Knut Stamnes in
Current site
Google Scholar
PubMed
Close
, and
Snorre Stamnes NASA Langley Research Center, Hampton, Virginia

Search for other papers by Snorre Stamnes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The treatment of strongly anisotropic scattering phase functions is still a challenge for accurate radiance computations. The new delta-M+ method resolves this problem by introducing a reliable, fast, accurate, and easy-to-use Legendre expansion of the scattering phase function with modified moments. Delta-M+ is an upgrade of the widely used delta-M method that truncates the forward scattering peak with a Dirac delta function, where the “+” symbol indicates that it essentially matches moments beyond the first M terms. Compared with the original delta-M method, delta-M+ has the same computational efficiency, but for radiance computations, the accuracy and stability have been increased dramatically.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhenyi Lin, lzhenyi@stevens.edu

Abstract

The treatment of strongly anisotropic scattering phase functions is still a challenge for accurate radiance computations. The new delta-M+ method resolves this problem by introducing a reliable, fast, accurate, and easy-to-use Legendre expansion of the scattering phase function with modified moments. Delta-M+ is an upgrade of the widely used delta-M method that truncates the forward scattering peak with a Dirac delta function, where the “+” symbol indicates that it essentially matches moments beyond the first M terms. Compared with the original delta-M method, delta-M+ has the same computational efficiency, but for radiance computations, the accuracy and stability have been increased dramatically.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhenyi Lin, lzhenyi@stevens.edu
Save
  • Arfken, G. B., and H. J. Weber, 1995: Mathematical Methods for Physicists. 4th ed. Academic Press, 1029 pp.

    • Crossref
    • Export Citation
  • Berk, A., P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. van den Bosch, 2014: MODTRAN6: A major upgrade of the MODTRAN radiative transfer code. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, M. Velez-Reyes and F. A. Kruse, Eds., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 9088), 90080H, https://doi.org/10.1117/12.2050433.

    • Crossref
    • Export Citation
  • Cohen, D., S. Stamnes, T. Tanikawa, E. Sommersten, J. Stamnes, J. Lotsberg, and K. Stamnes, 2013: Comparison of discrete ordinate and Monte Carlo simulations of polarized radiative transfer in two coupled slabs with different refractive indices. Opt. Express, 21, 95929614, https://doi.org/10.1364/OE.21.009592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fournier, G. R., and J. L. Forand, 1994: Analytic phase function for ocean water. Ocean Optics XII, J. S. Jaffe, Ed., Society of Photo-Optical Instrumentation Engineers (SPIE Proceedings, Vol. 2258), 194–201, https://doi.org/10.1117/12.190063.

    • Crossref
    • Export Citation
  • Hamre, B., S. Stamnes, K. Stamnes, and J. Stamnes, 2017: AccuRT: A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system. Proc. AIP Conf. on Radiation Processes in the Atmosphere and Ocean, Auckland, New Zealand, American Institute of Physics, 120002, https://doi.org/10.1063/1.4975576.

    • Crossref
    • Export Citation
  • He, X., D. Pan, Y. Bai, Q. Zhu, and F. Gong, 2007: Vector radiative transfer numerical model of coupled ocean-atmosphere system using matrix-operator method. Sci. China, 50D, 442452, https://doi.org/10.1007/s11430-007-2075-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henyey, L. G., and J. L. Greenstein, 1941: Diffuse radiation in the galaxy. Astrophys. J., 93, 7083, https://doi.org/10.1086/144246.

  • Hu, Y.-X., B. Wielicki, B. Lin, G. Gibson, S.-C. Tsay, K. Stamnes, and T. Wong, 2000: δ-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting. J. Quant. Spectrosc. Radiat. Transfer, 65, 681690, https://doi.org/10.1016/S0022-4073(99)00147-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z., T. P. Charlock, K. Rutledge, K. Stamnes, and Y. Wang, 2006: Analytical solution of radiative transfer in the coupled atmosphere–ocean system with a rough surface. Appl. Opt., 45, 74437455, https://doi.org/10.1364/AO.45.007443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, J. H., W. Wiscombe, and J. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 24522459, https://doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., and Coauthors, 2010: Benchmark results in vector atmospheric radiative transfer. J. Quant. Spectrosc. Radiat. Transfer, 111, 19311946, https://doi.org/10.1016/j.jqsrt.2010.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., S. Stamnes, Z. Jin, I. Laszlo, S.-C. Tsay, W. Wiscombe, and K. Stamnes, 2015: Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: Upgrades of the DISORT computational tool. J. Quant. Spectrosc. Radiat. Transfer, 157, 119134, https://doi.org/10.1016/j.jqsrt.2015.02.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., and M. Duan, 2004: A successive order of scattering model for solving vector radiative transfer in the atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 87, 243259, https://doi.org/10.1016/j.jqsrt.2003.12.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitrescu, C., and G. Stephens, 2004: On similarity and scaling of the radiative transfer equation. J. Quant. Spectrosc. Radiat. Transfer, 86, 387394, https://doi.org/10.1016/j.jqsrt.2003.12.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. Tanaka, 1988: Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40, 5169, https://doi.org/10.1016/0022-4073(88)90031-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozanov, V. V., and A. I. Lyapustin, 2010: Similarity of radiative transfer equation: Error analysis of phase function truncation techniques. J. Quant. Spectrosc. Radiat. Transfer, 111, 19641979, https://doi.org/10.1016/j.jqsrt.2010.03.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozanov, V. V., A. Rozanov, A. Kokhanovsky, and J. Burrows, 2014: Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN. J. Quant. Spectrosc. Radiat. Transfer, 133, 1371, https://doi.org/10.1016/j.jqsrt.2013.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spurr, R., 2008: LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems. Light Scattering Reviews 3: Light Scattering and Reflection, Springer, 229–275.

    • Crossref
    • Export Citation
  • Stamnes, K., and J. J. Stamnes, 2016: Radiative Transfer in Coupled Environmental Systems: An Introduction to Forward and Inverse Modeling. Wiley, 368 pp.

    • Crossref
    • Export Citation
  • Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 25022509, https://doi.org/10.1364/AO.27.002502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S.-C. Tsay, W. Wiscombe, and I. Laszlo, 2000: DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: Documentation of methodology. Stevens Institute of Technology Dept. of Physics and Engineering Physics Tech. Rep., 107 pp.

  • Stamnes, K., G. E. Thomas, and J. J. Stamnes, 2017: Radiative Transfer in the Atmosphere and Ocean. 2nd ed. Cambridge University Press, 528 pp.

    • Crossref
    • Export Citation
  • Stamnes, S., S. Ou, Z. Lin, Y. Takano, S. Tsay, K. Liou, and K. Stamnes, 2017: Polarized radiative transfer of a cirrus cloud consisting of randomly oriented hexagonal ice crystals: The 3×3 approximation for non-spherical particles. J. Quant. Spectrosc. Radiat. Transfer, 193, 5768, https://doi.org/10.1016/j.jqsrt.2016.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K.-N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319, https://doi.org/10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiscombe, W., 1977: The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci., 34, 14081422, https://doi.org/10.1175/1520-0469(1977)034<1408:TDMRYA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P.-W., Y. Hu, C. R. Trepte, and P. L. Lucker, 2009: A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method. Opt. Express, 17, 20572079, https://doi.org/10.1364/OE.17.002057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 753 184 7
PDF Downloads 577 151 9