Dynamics of Extreme Stratospheric Negative Heat Flux Events in an Idealized Model

Etienne Dunn-Sigouin Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Etienne Dunn-Sigouin in
Current site
Google Scholar
PubMed
Close
and
Tiffany Shaw Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois

Search for other papers by Tiffany Shaw in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Recent work has shown that extreme stratospheric wave-1 negative heat flux events couple with the troposphere via an anomalous wave-1 signal. Here, a dry dynamical core model is used to investigate the dynamical mechanisms underlying the events. Ensemble spectral nudging experiments are used to isolate the role of specific dynamical components: 1) the wave-1 precursor, 2) the stratospheric zonal-mean flow, and 3) the higher-order wavenumbers. The negative events are partially reproduced when nudging the wave-1 precursor and the zonal-mean flow whereas they are not reproduced when nudging either separately. Nudging the wave-1 precursor and the higher-order wavenumbers reproduces the events, including the evolution of the stratospheric zonal-mean flow. Mechanism denial experiments, whereby one component is fixed to the climatology and others are nudged to the event evolution, suggest higher-order wavenumbers play a role by modifying the zonal-mean flow and through stratospheric wave–wave interaction. Nudging all tropospheric wave precursors (wave-1 and higher-order wavenumbers) confirms they are the source of the stratospheric waves. Nudging all stratospheric waves reproduces the tropospheric wave-1 signal. Taken together, the experiments suggest the events are consistent with downward wave propagation from the stratosphere to the troposphere and highlight the key role of higher-order wavenumbers.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Etienne Dunn-Sigouin, etienne.dunn-sigouin@uib.no

Abstract

Recent work has shown that extreme stratospheric wave-1 negative heat flux events couple with the troposphere via an anomalous wave-1 signal. Here, a dry dynamical core model is used to investigate the dynamical mechanisms underlying the events. Ensemble spectral nudging experiments are used to isolate the role of specific dynamical components: 1) the wave-1 precursor, 2) the stratospheric zonal-mean flow, and 3) the higher-order wavenumbers. The negative events are partially reproduced when nudging the wave-1 precursor and the zonal-mean flow whereas they are not reproduced when nudging either separately. Nudging the wave-1 precursor and the higher-order wavenumbers reproduces the events, including the evolution of the stratospheric zonal-mean flow. Mechanism denial experiments, whereby one component is fixed to the climatology and others are nudged to the event evolution, suggest higher-order wavenumbers play a role by modifying the zonal-mean flow and through stratospheric wave–wave interaction. Nudging all tropospheric wave precursors (wave-1 and higher-order wavenumbers) confirms they are the source of the stratospheric waves. Nudging all stratospheric waves reproduces the tropospheric wave-1 signal. Taken together, the experiments suggest the events are consistent with downward wave propagation from the stratosphere to the troposphere and highlight the key role of higher-order wavenumbers.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Etienne Dunn-Sigouin, etienne.dunn-sigouin@uib.no
Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., 2009: Stratospheric polar vortex influence on Northern Hemisphere winter climate variability. Geophys. Res. Lett., 36, L18703, https://doi.org/10.1029/2009GL039334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E., and T. A. Shaw, 2015: Comparing and contrasting extreme stratospheric events, including their coupling to the tropospheric circulation. J. Geophys. Res. Atmos., 120, 13741390, https://doi.org/10.1002/2014JD022116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and L. M. Polvani, 2009: Stratosphere–troposphere coupling in a relatively simple AGCM: The importance of stratospheric variability. J. Climate, 22, 19201933, https://doi.org/10.1175/2008JCLI2548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and Coauthors, 2010: Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models. J. Geophys. Res., 115, D00M06, https://doi.org/10.1029/2009JD013770.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., G. Gollan, T. Jung, and T. Kunz, 2012: Factors influencing Northern Hemisphere winter mean atmospheric circulation anomalies during the period 1960/61 to 2001/02. Quart. J. Roy. Meteor. Soc., 138, 19701982, https://doi.org/10.1002/qj.1947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, F., R. J. Greatbatch, G. Gollan, T. Jung, and A. Weisheimer, 2017: Remote control of North Atlantic oscillation predictability via the stratosphere. Quart. J. Roy. Meteor. Soc., 143, 706719, https://doi.org/10.1002/qj.2958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnik, N., 2009: Observed stratospheric downward reflection and its relation to upward pulses of wave activity. J. Geophys. Res., 114, D08120, https://doi.org/10.1029/2008JD010493.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., and R. S. Lindzen, 2001: The effect of reflecting surfaces on the vertical structure and variability of stratospheric planetary waves. J. Atmos. Sci., 58, 28722894, https://doi.org/10.1175/1520-0469(2001)058<2872:TEORSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and I. R. Simpson, 2014: The downward influence of stratospheric sudden warmings. J. Atmos. Sci., 71, 38563876, https://doi.org/10.1175/JAS-D-14-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and P. H. Haynes, 2016: Stratospheric control of planetary waves. Geophys. Res. Lett., 43, 11 88411 892, https://doi.org/10.1002/2016GL071372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., T. G. Shepherd, and G. L. Manney, 2013: Statistical characterization of Arctic polar-night jet oscillation events. J. Climate, 26, 20962116, https://doi.org/10.1175/JCLI-D-12-00202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., H. Mukougawa, P. Maury, M. Ueda, and C. Claud, 2016: Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation. J. Geophys. Res. Atmos., 121, 8094, https://doi.org/10.1002/2015JD023359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. W. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. L. Hartmann, D. W. J. Thompson, K. Jeev, and Y. L. Yung, 2005: Stratosphere-troposphere evolution during polar vortex intensification. J. Geophys. Res., 110, D24101, https://doi.org/10.1029/2005JD006302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubis, S. W., K. Matthes, N.-E. Omrani, N. Harnik, and S. Wahl, 2016: Influence of the quasi-biennial oscillation and sea surface temperature variability on downward wave coupling in the Northern Hemisphere. J. Atmos. Sci., 73, 19431965, https://doi.org/10.1175/JAS-D-15-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubis, S. W., V. Silverman, K. Matthes, N. Harnik, N.-E. Omrani, and S. Wahl, 2017: How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere? Atmos. Chem. Phys., 17, 24372458, https://doi.org/10.5194/acp-17-2437-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1982: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan, 60, 3765, https://doi.org/10.2151/jmsj1965.60.1_37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., and T. G. Shepherd, 2009: Impact of climate change on stratospheric sudden warmings as simulated by the Canadian Middle Atmosphere Model. J. Climate, 22, 54495463, https://doi.org/10.1175/2009JCLI3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., S. Noguchi, Y. Kuroda, R. Mizuta, and K. Kodera, 2017: Dynamics and predictability of downward-propagating stratospheric planetary waves observed in March 2007. J. Atmos. Sci., 74, 35333550, https://doi.org/10.1175/JAS-D-16-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T., and C. F. Hsu, 1983: Stratospheric sudden coolings and the role of nonlinear wave interactions in preconditioning the circumpolar flow. J. Atmos. Sci., 40, 909928, https://doi.org/10.1175/1520-0469(1983)040<0909:SSCATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16, 30113026, https://doi.org/10.1175/1520-0442(2003)016<3011:OEOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2004: Downward coupling between the stratosphere and troposphere: The relative roles of wave and zonal mean processes. J. Climate, 17, 49024909, https://doi.org/10.1175/JCLI-3247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2010: Planetary waves and the extratropical winter stratosphere. The Stratosphere: Dynamics, Transport and Chemistry, Geophys. Monogr., Vol. 190, Amer. Geophys. Union, 23–41.

    • Crossref
    • Export Citation
  • Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, 1114, https://doi.org/10.1029/2001GL014284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., 1987: A study of planetary waves in the southern winter troposphere and stratosphere. Part I: Wave structure and vertical propagation. J. Atmos. Sci., 44, 917935, https://doi.org/10.1175/1520-0469(1987)044<0917:ASOPWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A., and Coauthors, 2016: Seasonal winter forecasts and the stratosphere. Atmos. Sci. Lett., 17, 5156, https://doi.org/10.1002/asl.598.

  • Scinocca, J. F., and P. H. Haynes, 1998: Dynamical forcing of stratospheric planetary waves by tropospheric baroclinic eddies. J. Atmos. Sci., 55, 23612392, https://doi.org/10.1175/1520-0469(1998)055<2361:DFOSPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and J. Perlwitz, 2013: The life cycle of Northern Hemisphere downward wave coupling between the stratosphere and troposphere. J. Climate, 26, 17451763, https://doi.org/10.1175/JCLI-D-12-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and J. Perlwitz, 2014: On the control of the residual circulation and stratospheric temperatures in the Arctic by planetary wave coupling. J. Atmos. Sci., 71, 195206, https://doi.org/10.1175/JAS-D-13-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., J. Perlwitz, and N. Harnik, 2010: Downward wave coupling between the stratosphere and troposphere: The importance of meridional wave guiding and comparison with zonal-mean coupling. J. Climate, 23, 63656381, https://doi.org/10.1175/2010JCLI3804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., J. Perlwitz, N. Harnik, P. A. Newman, and S. Pawson, 2011: The impact of stratospheric ozone changes on downward wave coupling in the Southern Hemisphere. J. Climate, 24, 42104229, https://doi.org/10.1175/2011JCLI4170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. Scinocca, V. Kharin, and T. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98102, https://doi.org/10.1038/ngeo1698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. K., 1983: Observation of wave–wave interactions in the stratosphere. J. Atmos. Sci., 40, 24842496, https://doi.org/10.1175/1520-0469(1983)040<2484:OOWWII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. L., and R. K. Scott, 2016: The role of planetary waves in the tropospheric jet response to stratospheric cooling. Geophys. Res. Lett., 43, 29042911, https://doi.org/10.1002/2016GL067849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y., and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61, 17111725, https://doi.org/10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and Coauthors, 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 9871003, https://doi.org/10.1002/qj.2432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal-to-Seasonal (S2S) Prediction Project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 820 333 100
PDF Downloads 477 76 5