Is Condensation-Induced Atmospheric Dynamics a New Theory of the Origin of the Winds?

A. Jaramillo Facultad de Minas, Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellin, Colombia

Search for other papers by A. Jaramillo in
Current site
Google Scholar
PubMed
Close
,
O. J. Mesa Facultad de Minas, Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellin, Colombia

Search for other papers by O. J. Mesa in
Current site
Google Scholar
PubMed
Close
, and
D. J. Raymond Physics Department, New Mexico Institute of Mining and Technology, Socorro, New Mexico

Search for other papers by D. J. Raymond in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The hypothesis of “condensation-induced atmospheric dynamics” proposes that a previously unstudied force associated with condensation is the driver of atmospheric motions, explaining phenomena like cyclones, monsoon circulations, and even the Hadley circulation. This hypothesis caused significant interest in the academic community, but it also produced substantial controversy, receiving numerous criticisms from experts who have serious doubts about the existence or importance of this force. In this paper, we show that the alleged new force is based on an unbalanced internal force within the atmospheric gas. Therefore, the dynamic effects attributed to this force are not physically possible, pointing to the violation of Newton’s third law. We also reiterate that the role of the water cycle in the standard theory is essential to explain major atmospheric circulations but without physical inconsistencies.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Jaramillo, ajarami2@unal.edu.co

Abstract

The hypothesis of “condensation-induced atmospheric dynamics” proposes that a previously unstudied force associated with condensation is the driver of atmospheric motions, explaining phenomena like cyclones, monsoon circulations, and even the Hadley circulation. This hypothesis caused significant interest in the academic community, but it also produced substantial controversy, receiving numerous criticisms from experts who have serious doubts about the existence or importance of this force. In this paper, we show that the alleged new force is based on an unbalanced internal force within the atmospheric gas. Therefore, the dynamic effects attributed to this force are not physically possible, pointing to the violation of Newton’s third law. We also reiterate that the role of the water cycle in the standard theory is essential to explain major atmospheric circulations but without physical inconsistencies.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Jaramillo, ajarami2@unal.edu.co
Save
  • Adams, D. K., and N. O. Rennó, 2005: Thermodynamic efficiencies of an idealized global climate model. Climate Dyn., 25, 801813, https://doi.org/10.1007/s00382-005-0071-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunt, D., 1941: Physical and Dynamical Meteorology. Cambridge University Press, 428 pp.

  • Carnot, S., 1824: Réflexions sur la puissance motrice du feu et sur les machines propres à développer atte puissance (in French). Bachelier Libraire, 118 pp.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, https://doi.org/10.1146/annurev.earth.31.100901.141259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and M. Bister, 1996: Moist convective velocity and buoyancy scales. J. Atmos. Sci., 53, 32763285, https://doi.org/10.1175/1520-0469(1996)053<3276:MCVABS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorshkov, V. G., A. M. Makarieva, and A. V. Nefiodov, 2012: Condensation of water vapor in the gravitational field. J. Exp. Theor. Phys., 115, 723728, https://doi.org/10.1134/S106377611209004X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 532 pp.

    • Crossref
    • Export Citation
  • Lackmann, G. M., and R. M. Yablonsky, 2004: The importance of the precipitation mass sink in tropical cyclones and other heavily precipitating systems. J. Atmos. Sci., 61, 16741692, https://doi.org/10.1175/1520-0469(2004)061<1674:TIOTPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laliberté, F., J. Zika, L. Mudryk, P. J. Kushner, J. Kjellsson, and K. Döös, 2015: Constrained work output of the moist atmospheric heat engine in a warming climate. Science, 347, 540543, https://doi.org/10.1126/science.1257103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1967: The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, 161 pp.

  • Makarieva, A. M., and V. G. Gorshkov, 2007: Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol. Earth Syst. Sci., 11, 10131033, https://doi.org/10.5194/hess-11-1013-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., and V. G. Gorshkov, 2009a: Condensation-induced dynamic gas fluxes in a mixture of condensable and non-condensable gases. Phys. Lett., 373A, 28012804, https://doi.org/10.1016/j.physleta.2009.05.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., and V. G. Gorshkov, 2009b: Condensation-induced kinematics and dynamics of cyclones, hurricanes and tornadoes. Phys. Lett., 373A, 42014205, https://doi.org/10.1016/j.physleta.2009.09.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., and V. G. Gorshkov, 2009c: Reply to A. G. C. A. Meesters et al.’s comment on “Biotic pump of atmospheric moisture as driver of the hydrological cycle on land.” Hydrol. Earth Syst. Sci., 13, 13071311, https://doi.org/10.5194/hess-13-1307-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., and V. G. Gorshkov, 2010: The biotic pump: Condensation, atmospheric dynamics and climate. Int. J. Water, 5, 365385, https://doi.org/10.1504/IJW.2010.038729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., V. G. Gorshkov, D. Sheil, A. D. Nobre, and B.-L. Li, 2013: Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmos. Chem. Phys., 13, 10391056, https://doi.org/10.5194/acp-13-1039-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., V. G. Gorshkov, and A. V. Nefiodov, 2014: Condensational power of air circulation in the presence of a horizontal temperature gradient. Phys. Lett., 378A, 294298, https://doi.org/10.1016/j.physleta.2013.11.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., V. G. Gorshkov, and A. V. Nefiodov, 2015: Empirical evidence for the condensational theory of hurricanes. Phys. Lett., 379A, 23962398, https://doi.org/10.1016/j.physleta.2015.07.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., V. G. Gorshkov, A. V. Nefiodov, A. V. Chikunov, D. Sheil, A. D. Nobre, and B.-L. Li, 2017: Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement. Atmos. Res., 193, 216230, https://doi.org/10.1016/j.atmosres.2017.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meesters, A. G. C. A., A. J. Dolman, and L. A. Bruijnzeel, 2009: Comment on “Biotic pump of atmospheric moisture as driver of the hydrological cycle on land” by A. M. Makarieva and V. G. Gorshkov, Hydrol. Earth Syst. Sci., 11, 1013–1033, 2007. Hydrol. Earth Syst. Sci., 13, 12991305, https://doi.org/10.5194/hess-13-1299-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., 2011: Water vapor and mechanical work: A comparison of Carnot and steam cycles. J. Atmos. Sci., 68, 91102, https://doi.org/10.1175/2010JAS3530.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and I. M. Held, 2002a: Entropy budget of an atmosphere in radiative–convective equilibrium. Part I: Maximum work and frictional dissipation. J. Atmos. Sci., 59, 125139, https://doi.org/10.1175/1520-0469(2002)059<0125:EBOAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and I. M. Held, 2002b: Entropy budget of an atmosphere in radiative–convective equilibrium. Part II: Latent heat transport and moist processes. J. Atmos. Sci., 59, 140149, https://doi.org/10.1175/1520-0469(2002)059<0140:EBOAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and J. Dias, 2012: Satellite estimates of precipitation-induced dissipation in the atmosphere. Science, 335, 953956, https://doi.org/10.1126/science.1215869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., V. Balaji, and I. M. Held, 2000: Frictional dissipation in a precipitating atmosphere. J. Atmos. Sci., 57, 989994, https://doi.org/10.1175/1520-0469(2000)057<0989:FDIAPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2013: Sources and sinks of entropy in the atmosphere. J. Adv. Model. Earth Syst., 5, 755763, https://doi.org/10.1002/jame.20050.

  • Rennó, N. O., and A. P. Ingersoll, 1996: Natural convection as a heat engine: A theory for CAPE. J. Atmos. Sci., 53, 572585, https://doi.org/10.1175/1520-0469(1996)053<0572:NCAAHE>2.0.CO;2; Corrigendum, 53, 1355, https://doi.org/10.1175/1520-0469(1996)053<1355:>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennó, N. O., and D. K. Adams, 2001: The convective heat engine. Recent Research Developments in Atmospheric Science, S. Pandalai, Ed., Research Signpost, 1–14.

  • Rennó, N. O., M. L. Burkett, and M. P. Larkin, 1998: A simple thermodynamical theory for dust devils. J. Atmos. Sci., 55, 32443252, https://doi.org/10.1175/1520-0469(1998)055<3244:ASTTFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2016: Scaling of the entropy budget with surface temperature in radiative-convective equilibrium. J. Adv. Model. Earth Syst., 8, 11321150, https://doi.org/10.1002/2016MS000673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J., and P. Hobbs, 2006: Atmospheric Science: An Introductory Survey. Academic Press, 504 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1302 676 279
PDF Downloads 812 197 13