An Air Stagnation Index to Qualify Extreme Haze Events in Northern China

Jin Feng Institute of Urban Meteorology, China Meteorological Administration, Beijing, China, and National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jin Feng in
Current site
Google Scholar
PubMed
Close
,
Jiannong Quan Institute of Urban Meteorology, China Meteorological Administration, Beijing, China

Search for other papers by Jiannong Quan in
Current site
Google Scholar
PubMed
Close
,
Hong Liao Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Hong Liao in
Current site
Google Scholar
PubMed
Close
,
Yanjie Li State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yanjie Li in
Current site
Google Scholar
PubMed
Close
, and
Xiujuan Zhao Institute of Urban Meteorology, China Meteorological Administration, Beijing, China

Search for other papers by Xiujuan Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Stagnation weather affects atmospheric diffusion ability, and hence causes the occurrence of haze events, which have been happening frequently in northern China (NC). This work puts forward an air stagnation index (ASITS) to characterize the stagnation weather in NC, in which the processes of ventilation, vertical diffusion, and wet deposition potency are concerned. ASITS can be applied to analyze air stagnation conditions with daily to monthly time scale. It is shown that the ASITS and particulate matter smaller than 2.5 μm in diameter (PM2.5) concentrations own similar lognormal probability distribution functions on both daily and monthly time scales. And the correlation analyses between the ASITS and PM2.5 concentrations indicate that the ASITS can reflect the monthly and daily variations in PM2.5 concentrations in NC. In addition, ASITS could be used as a leading predictor of haze events since correlation coefficients of ASITS leading PM2.5 concentrations by 1 day were significant and were larger than simultaneous correlation coefficients in almost all areas in NC. The robust relationship between ASITS and PM2.5 concentrations exists possibly because the index can reflect the activities of synoptic systems. ASITS could be a useful statistical indicator for variations in PM2.5 concentrations and haze events, and a good tool in analyzing the relationship between climate change and long-term variations in haze in NC.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0354.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jin Feng, jfeng@ium.cn

Abstract

Stagnation weather affects atmospheric diffusion ability, and hence causes the occurrence of haze events, which have been happening frequently in northern China (NC). This work puts forward an air stagnation index (ASITS) to characterize the stagnation weather in NC, in which the processes of ventilation, vertical diffusion, and wet deposition potency are concerned. ASITS can be applied to analyze air stagnation conditions with daily to monthly time scale. It is shown that the ASITS and particulate matter smaller than 2.5 μm in diameter (PM2.5) concentrations own similar lognormal probability distribution functions on both daily and monthly time scales. And the correlation analyses between the ASITS and PM2.5 concentrations indicate that the ASITS can reflect the monthly and daily variations in PM2.5 concentrations in NC. In addition, ASITS could be used as a leading predictor of haze events since correlation coefficients of ASITS leading PM2.5 concentrations by 1 day were significant and were larger than simultaneous correlation coefficients in almost all areas in NC. The robust relationship between ASITS and PM2.5 concentrations exists possibly because the index can reflect the activities of synoptic systems. ASITS could be a useful statistical indicator for variations in PM2.5 concentrations and haze events, and a good tool in analyzing the relationship between climate change and long-term variations in haze in NC.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0354.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jin Feng, jfeng@ium.cn

Supplementary Materials

    • Supplemental Materials (PDF 578.45 KB)
Save
  • Bei, N., and Coauthors, 2016: Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong basin, China. Atmos. Chem. Phys., 16, 73737387, https://doi.org/10.5194/acp-16-7373-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2 : Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606/Vol. 43, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Bosilovich, M. G., F. R. Robertson, L. Takacs, A. Molod, and D. Mocko, 2017: Atmospheric water balance and variability in the MERRA-2 reanalysis. J. Climate, 30, 11771196, https://doi.org/10.1175/JCLI-D-16-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., K. Li, H. Liao, H. Wang, and L. Wu, 2017: Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Climate Change, 7, 257262, https://doi.org/10.1038/nclimate3249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. L., S. Wang, C. Liu, B. Zhou, M. O. Wenig, and A. Saiz-Lopez, 2017: On the summertime air quality and related photochemical processes in the megacity Shanghai, China. Sci. Total Environ., 580, 974983, https://doi.org/10.1016/j.scitotenv.2016.12.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., and Coauthors, 2015: Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit. Atmos. Chem. Phys., 15, 12 87912 895, https://doi.org/10.5194/acp-15-12879-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., Z. Liu, J. Fast, and J. Ban, 2016: Simulations of sulfate–nitrate–ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014. Atmos. Chem. Phys., 16, 10 70710 724, https://doi.org/10.5194/acp-16-10707-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and H. Wang, 2015: Haze days in north China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. J. Geophys. Res. Atmos., 120, 58955909, https://doi.org/10.1002/2015JD023225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and Coauthors, 2012: A parameterization of low visibilities for hazy days in the North China Plain. Atmos. Chem. Phys., 12, 49354950, https://doi.org/10.5194/acp-12-4935-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., J. Zhang, T. Zhang, W. Liu, and J. Liu, 2015: Haze observations by simultaneous lidar and WPS in Beijing before and during APEC, 2014. Sci. China Chem., 58, 13851392, https://doi.org/10.1007/s11426-015-5467-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cobourn, W. G., 2010: An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations. Atmos. Environ., 44, 30153023, https://doi.org/10.1016/j.atmosenv.2010.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coy, L., K. Wargan, A. M. Molod, W. R. McCarty, and S. Pawson, 2016: Structure and dynamics of the quasi-biennial oscillation in MERRA-2. J. Climate, 29, 53395354, https://doi.org/10.1175/JCLI-D-15-0809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and Y. Liu, 2014: Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity. Sci. China Earth Sci., 57, 3646, https://doi.org/10.1007/s11430-013-4792-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., H. Liao, and Y. Gu, 2016: A comparison of meteorology-driven interannual variations of surface aerosol concentrations in the eastern United States, eastern China, and Europe. SOLA, 12, 146152, https://doi.org/10.2151/sola.2016-031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y., and H. Liao, 2012: Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China: Impacts on tropospheric ozone and secondary organic aerosol. Atmos. Environ., 59, 170185, https://doi.org/10.1016/j.atmosenv.2012.05.053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, M., G. R. Carmichael, P. E. Saide, Z. Lu, M. Yu, D. G. Streets, and Z. Wang, 2016: Response of winter fine particulate matter concentrations to emission and meteorology changes in north China. Atmos. Chem. Phys., 16, 11 83711 851, https://doi.org/10.5194/acp-16-11837-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gui, K., and Coauthors, 2016: Aerosol optical properties based on ground and satellite retrievals during a serious haze episode in December 2015 over Beijing. Atmosphere, 7, 70, https://doi.org/10.3390/atmos7050070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, H., Y. Wang, and H. Zhang, 2017: Characterization of criteria air pollutants in Beijing during 2014–2015. Environ. Res., 154, 334344, https://doi.org/10.1016/j.envres.2017.01.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., and Coauthors, 2016: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys., 16, 13 30913 319, https://doi.org/10.5194/acp-16-13309-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, L., X. Guo, C. Fang, and S. Zhu, 2015: Observation analysis on characteristics of formation, evolution and transition of a long-lasting severe fog and haze episode in north China. Sci. China Earth Sci., 58, 329344, https://doi.org/10.1007/s11430-014-4924-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, S., and Coauthors, 2014: Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA, 111, 17 37317 378, https://doi.org/10.1073/pnas.1419604111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, S., and Coauthors, 2014: Characteristics and formation mechanism of a winter haze—Fog episode in Tianjin, China. Atmos. Environ., 98, 323330, https://doi.org/10.1016/j.atmosenv.2014.08.078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, Y., and Coauthors, 2011: Seasonal characteristics of spherical aerosol distribution in eastern Asia: Integrated analysis using ground/space-based lidars and a chemical transport model. SOLA, 7, 121124, https://doi.org/10.2151/sola.2011-031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Q., C. Li, F. Geng, G. Zhou, W. Gao, W. Yu, Z. Li, and M. Du, 2016: A parameterization scheme of aerosol vertical distribution for surface-level visibility retrieval from satellite remote sensing. Remote Sens. Environ., 181, 113, https://doi.org/10.1016/j.rse.2016.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, D. E., Harshvardhan, and N. S. Diffenbaugh, 2012: Response of air stagnation frequency to anthropogenically enhanced radiative forcing. Environ. Res. Lett., 7, 044034, https://doi.org/10.1088/1748-9326/7/4/044034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, D. E., C. B. Skinner, D. Singh, and N. S. Diffenbaugh, 2014: Occurrence and persistence of future atmospheric stagnation events. Nat. Climate Change, 4, 698703, https://doi.org/10.1038/nclimate2272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., Y. Wang, Q. Ying, and H. Zhang, 2014: Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River delta, China. Atmos. Environ., 95, 598609, https://doi.org/10.1016/j.atmosenv.2014.07.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., J. Chen, Q. Ying, and H. Zhang, 2016: One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmos. Chem. Phys., 16, 10 33310 350, https://doi.org/10.5194/acp-16-10333-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, L., C.-S. Yuan, G. Wang, and K. Wang, 2011: Chemical characteristics and source apportionment of PM10 during a brown haze episode in Harbin, China. Particuology, 9, 3238, https://doi.org/10.1016/j.partic.2010.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Q., X. Cai, Y. Song, and T. Zhu, 2017: Air stagnation in China (1985–2014): Climatological mean features and trends. Atmos. Chem. Phys., 17, 77937805, https://doi.org/10.5194/acp-17-7793-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jacob, D. J., and D. A. Winner, 2009: Effect of climate change on air quality. Atmos. Environ., 43, 5163, https://doi.org/10.1016/j.atmosenv.2008.09.051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, F., T. Wang, T. Wang, M. Xie, and H. Zhao, 2008: Numerical modeling of a continuous photochemical pollution episode in Hong Kong using WRF–Chem. Atmos. Environ., 42, 87178727, https://doi.org/10.1016/j.atmosenv.2008.08.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, F., Q. Liu, X. Huang, T. Wang, B. Zhuang, and M. Xie, 2012: Regional modeling of secondary organic aerosol over China using WRF/Chem. J. Aerosol Sci., 43, 5773, https://doi.org/10.1016/j.jaerosci.2011.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Y., R. Zhu, K. Zhu, and Z. Li, 2015: Numerical simulation on the air pollution potential in the severe air pollution episodes in Beijing–Tianjin–Hebei region (in Chinese). Acta Sci. Circumstantiae, 35, 26812692.

    • Search Google Scholar
    • Export Citation
  • Korshover, J., 1976: Climatology of stagnating anticyclones east of the Rocky Mountains, 1936–1975. NOAA Tech. Memo. ERL ARL-55, 26 pp.

  • Korshover, J., and J. K. Angell, 1982: A review of air-stagnation cases in the eastern United States during 1981—Annual summary. Mon. Wea. Rev., 110, 15151518, https://doi.org/10.1175/1520-0493(1982)110<1515:AROASC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2016: MERRA-2 input observations: Summary and assessment. NASA/TM-2016-104606/Vol. 46, 51 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160014544.pdf.

  • Leibensperger, E. M., L. J. Mickley, and D. J. Jacob, 2008: Sensitivity of US air quality to mid-latitude cyclone frequency and implications of 1980–2006 climate change. Atmos. Chem. Phys., 8, 70757086, https://doi.org/10.5194/acpd-8-12253-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and Z. Han, 2016: Aerosol vertical distribution over east China from RIEMS-Chem simulation in comparison with CALIPSO measurements. Atmos. Environ., 143, 177189, https://doi.org/10.1016/j.atmosenv.2016.08.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., H. Du, Z. Wang, Y. Sun, W. Yang, J. J. Li, X. Tang, and P. Fu, 2017: Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North China Plain. Environ. Pollut., 223, 605615, https://doi.org/10.1016/j.envpol.2017.01.063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2014: An integrated process rate analysis of a regional fine particulate matter episode over Yangtze River delta in 2010. Atmos. Environ., 91, 6070, https://doi.org/10.1016/j.atmosenv.2014.03.053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and Coauthors, 2016: Remote sensing of atmospheric particulate mass of dry PM2.5 near the ground: Method validation using ground-based measurements. Remote Sens. Environ., 173, 5968, https://doi.org/10.1016/j.rse.2015.11.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and Coauthors, 2017: Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev., 4, 810833, https://doi.org/10.1093/nsr/nwx117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-T., and M. B. McElroy, 2010: Impacts of boundary layer mixing on pollutant vertical profiles in the lower troposphere: Implications to satellite remote sensing. Atmos. Environ., 44, 17261739, https://doi.org/10.1016/j.atmosenv.2010.02.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., D. Wu, and S. J. Fan, 2015: Distribution of regional pollution and the characteristics of vertical wind field in the Pearl River delta (in Chinese). Environ. Sci., 36, 39893998.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., M. Franklin, R. Kahn, and P. Koutrakis, 2007: Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS. Remote Sens. Environ., 107, 3344, https://doi.org/10.1016/j.rse.2006.05.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, X., and Coauthors, 2016: Impact of crop field burning and mountains on heavy haze in the North China Plain: A case study. Atmos. Chem. Phys., 16, 96759691, https://doi.org/10.5194/acp-16-9675-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H.-C., 2002: The statistical characters of PM10 concentration in Taiwan area. Atmos. Environ., 36, 491502, https://doi.org/10.1016/S1352-2310(01)00245-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mamtimin, B., and F. X. Meixner, 2011: Air pollution and meteorological processes in the growing dryland city of Urumqi (Xinjiang, China). Sci. Total Environ., 409, 12771290, https://doi.org/10.1016/j.scitotenv.2010.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J., H. Sheng, H. Zhao, and C. Zhou, 2014: Observation study on the size distribution of sand dust aerosol particles over Yinchuan, China. Adv. Meteor., 2014, 157645, https://doi.org/10.1155/2014/157645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGrath-Spangler, E. L., and A. Molod, 2014: Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions. Atmos. Chem. Phys., 14, 67176727, https://doi.org/10.5194/acp-14-6717-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mijling, B., R. J. van der A, and Q. Zhang, 2013: Regional nitrogen oxides emission trends in East Asia observed from space. Atmos. Chem. Phys., 13, 12 00312 012, https://doi.org/10.5194/acp-13-12003-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, Q., and H. Liao, 2014: Simulation of the interannual variations of aerosols in China: Role of variations in meteorological parameters. Atmos. Chem. Phys., 14, 11 17711 219, https://doi.org/10.5194/acpd-14-11177-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovadnevaitė, J., K. Kvietkus, and J. Šakalys, 2007: Evaluation of the impact of long-range transport and aerosol concentration temporal variations at the eastern coast of the Baltic Sea. Environ. Monit. Assess., 132, 365375, https://doi.org/10.1007/s10661-006-9540-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, Y. M., Y. J. Li, H. Wang, B. P. Y. L. Lee, D. D. Huang, and C. K. Chan, 2016: Particulate matter (PM) episodes at a suburban site in Hong Kong: Evolution of PM characteristics and role of photochemistry in secondary aerosol formation. Atmos. Chem. Phys., 16, 14 13114 145, https://doi.org/10.5194/acp-16-14131-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, J., Q. Zhang, H. He, J. Liu, M. Huang, and H. Jin, 2011: Analysis of the formation of fog and haze in North China Plain (NCP). Atmos. Chem. Phys., 11, 82058214, https://doi.org/10.5194/acp-11-8205-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, J., X. Tie, Q. Zhang, Q. Liu, X. Li, Y. Gao, and D. Zhao, 2014: Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmos. Environ., 88, 8389, https://doi.org/10.1016/j.atmosenv.2014.01.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, J., Q. Liu, X. Li, Y. Gao, X. Jia, J. Sheng, and Y. Liu, 2015: Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events. Atmos. Environ., 122, 306312, https://doi.org/10.1016/j.atmosenv.2015.09.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Q. Liu, R. D. Koster, C. S. Draper, S. P. P. Mahanama, and G. S. Partyka, 2017: Land surface precipitation in MERRA-2. J. Climate, 30, 16431664, https://doi.org/10.1175/JCLI-D-16-0570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Šakalys, J., K. Kvietkus, D. Čeburnis, and D. Valiulis, 2004: The method of determination of heavy metals background concentration in the moss. Environ. Chem. Phys., 26, 109117.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, https://doi.org/10.1029/2009JD013680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. Wiley-Interscience, 1232 pp.

  • Sun, X., Y. Yin, Y. Sun, Y. Sun, W. Liu, and Y. Han, 2013: Seasonal and vertical variations in aerosol distribution over Shijiazhuang, China. Atmos. Environ., 81, 245252, https://doi.org/10.1016/j.atmosenv.2013.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tai, A. P. K., L. J. Mickley, and D. J. Jacob, 2010: Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ., 44, 39763984, https://doi.org/10.1016/j.atmosenv.2010.06.060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tai, A. P. K., L. J. Mickley, D. J. Jacob, E. M. Leibensperger, L. Zhang, J. A. Fisher, and H. O. T. Pye, 2012: Meteorological modes of variability for fine particulate matter (PM2.5) air quality in the United States: Implications for PM2.5 sensitivity to climate change. Atmos. Chem. Phys., 12, 31313145, https://doi.org/10.5194/acp-12-3131-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y.-X., H. Liao, and J. Feng, 2017: Estimating emissions and concentrations of road dust aerosol over China using the GEOS-Chem model. Atmos. Ocean. Sci. Lett., 10, 298305, https://doi.org/10.1080/16742834.2017.1320935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tie, X., D. Wu, and G. Brasseur, 2009: Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos. Environ., 43, 23752377, https://doi.org/10.1016/j.atmosenv.2009.01.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von Engeln, A., and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, https://doi.org/10.1175/JCLI-D-12-00385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. X. L., and J. K. Angell, 1999: Air stagnation climatology for the United States (1948-1998). NOAA/Air Resources Laboratory ATLAS 1, 76 pp., https://www.arl.noaa.gov/documents/reports/atlas.pdf.

  • Wang, S., S. Yu, P. Li, L. Wang, K. Mehmood, W. Liu, R. Yan, and X. Zheng, 2017: A study of characteristics and origins of haze pollution in Zhengzhou, China, based on observations and hybrid receptor models. Aerosol Air Qual. Res., 17, 513528, https://doi.org/10.4209/aaqr.2016.06.0238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and Coauthors, 2014: Severe haze episodes and seriously polluted fog water in Ji’nan, China. Sci. Total Environ., 493, 133137, https://doi.org/10.1016/j.scitotenv.2014.05.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., A. Khalizov, M. Levy, and R. Zhang, 2013: New directions: Light absorbing aerosols and their atmospheric impacts. Atmos. Environ., 81, 713715, https://doi.org/10.1016/j.atmosenv.2013.09.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Q. Q. Zhang, K. He, Q. Zhang, and L. Chai, 2013: Sulfate–nitrate–ammonium aerosols over China: Response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos. Chem. Phys., 13, 26352652, https://doi.org/10.5194/acp-13-2635-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. H., Z. R. Liu, J. K. Zhang, B. Hu, D. S. Ji, Y. C. Yu, and Y. S. Wang, 2015: Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing. Atmos. Chem. Phys., 15, 32053215, https://doi.org/10.5194/acp-15-3205-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y. Q., and Coauthors, 2016: PLAM—A meteorological pollution index for air quality and its applications in fog-haze forecasts in north China. Atmos. Chem. Phys., 16, 13531364, https://doi.org/10.5194/acp-16-1353-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y. R., and Coauthors, 2015: Characteristics and formation mechanism of continuous hazes in China: A case study during the autumn of 2014 in the North China Plain. Atmos. Chem. Phys., 15, 81658178, https://doi.org/10.5194/acp-15-8165-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, X., Y. Song, X. Cai, and H. Zhang, 2016: Study on the synoptic flow patterns and boundary layer process of the severe haze events over the North China Plain in January 2013. Atmos. Environ., 124, 129145, https://doi.org/10.1016/j.atmosenv.2015.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, W., Z. Zang, L. Zhang, Y. Li, and W. Wang, 2016: Estimating national-scale ground-level PM25 concentration in China using geographically weighted regression based on MODIS and MISR AOD. Environ. Sci. Pollut. Res. Int., 23, 83278338, https://doi.org/10.1007/s11356-015-6027-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., and Coauthors, 2015: Variations in PM2.5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi’an, China. Atmos. Environ., 112, 6471, https://doi.org/10.1016/j.atmosenv.2015.04.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., Q. Li, and R. Zhang, 2014: Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci., 57, 2635, https://doi.org/10.1007/s11430-013-4774-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., W. Gong, W. Wang, Y. Ji, Z. Zhu, and Y. Huang, 2016: Ground level PM2.5 estimates over China using satellite-based geographically weighted regression (GWR) models are improved by including NO2 and enhanced vegetation index (EVI). Int. J. Environ. Res. Public Health, 13, 1215, https://doi.org/10.3390/ijerph13121215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., J. Guo, Y. Miao, H. Liu, Y. Zhang, Z. Li, and P. Zhai, 2016: Planetary boundary layer height from CALIOP compared to radiosonde over China. Atmos. Chem. Phys., 16, 99519963, https://doi.org/10.5194/acp-16-9951-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. Y. C., Y. Q. Wang, T. Niu, S. L. Gong, Y. M. Zhang, and J. Y. Sun, 2012: Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys., 12, 779799, https://doi.org/10.5194/acp-12-779-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Z. Li, 2015: Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ., 160, 252262, https://doi.org/10.1016/j.rse.2015.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Z. Gao, D. Li, Y. Li, N. Zhang, X. Zhao, and J. Chen, 2014: On the computation of planetary boundary-layer height using the bulk Richardson number method. Geosci. Model Dev., 7, 25992611, https://doi.org/10.5194/gmd-7-2599-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., A. Ding, H. Mao, W. Nie, D. Zhou, L. Liu, X. Huang, and C. Fu, 2016: Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980–2013. Atmos. Environ., 124, 119128, https://doi.org/10.1016/j.atmosenv.2015.05.063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. W., and Coauthors, 2015: Significant concentration changes of chemical components of PM1 in the Yangtze River delta area of China and the implications for the formation mechanism of heavy haze–fog pollution. Sci. Total Environ., 538, 715, https://doi.org/10.1016/j.scitotenv.2015.06.104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T. L., S. L. Gong, P. Huang, and D. Lavoué, 2012: Hemispheric transport and influence of meteorology on global aerosol climatology. Atmos. Chem. Phys., 12, 76097624, https://doi.org/10.5194/acp-12-7609-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, X. J., P. S. Zhao, J. Xu, W. Meng, W. W. Pu, F. Dong, D. He, and Q. F. Shi, 2013: Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos. Chem. Phys., 13, 56855696, https://doi.org/10.5194/acp-13-5685-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, G. J., and Coauthors, 2015: Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys., 15, 29692983, https://doi.org/10.5194/acp-15-2969-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, B., J. Chen, L. Zhai, X. Fang, and Z. Zheng, 2017: Satellite based mapping of ground PM2.5 concentration using generalized additive modeling. Remote Sens., 9, 1, https://doi.org/10.3390/rs9010001.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2231 730 154
PDF Downloads 980 183 22