Ground-Truth Model Evaluation of Subgrid Orographic Base-Flux Parameterization

Stephen T. Garner NOAA/GFDL, Princeton, New Jersey

Search for other papers by Stephen T. Garner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-resolution simulation can be a powerful means of evaluating and tuning orographic drag schemes, but connecting the parameterized drag, which is a local forcing, with the model drag, which is fundamentally global, is not entirely straightforward. The simplest idea is to filter the velocity down to its divergent component and exploit Bernoulli’s law to define a local form drag. Using regional simulations over the Rockies, the Andes, and Greenland, we investigate the validity of this approach, which assumes that both the included nonorographic divergence and the missing orographic deformation will not significantly alter the diagnostic. The local drag is checked for consistency with the nonlocal drag at scales containing most of the gravity wave drag and blocking drag. The agreement is found to be satisfactory unless the drag is weak and nonlinear. In that case, we find it necessary to remove a steady pattern from the nonlocal drag in order to uncover a correlation. We test a specific mountain drag scheme using the proposed diagnostic and describe procedures for tuning the scheme’s drag coefficients and treatment of anisotropy.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steve Garner, steve.garner@noaa.gov

Abstract

High-resolution simulation can be a powerful means of evaluating and tuning orographic drag schemes, but connecting the parameterized drag, which is a local forcing, with the model drag, which is fundamentally global, is not entirely straightforward. The simplest idea is to filter the velocity down to its divergent component and exploit Bernoulli’s law to define a local form drag. Using regional simulations over the Rockies, the Andes, and Greenland, we investigate the validity of this approach, which assumes that both the included nonorographic divergence and the missing orographic deformation will not significantly alter the diagnostic. The local drag is checked for consistency with the nonlocal drag at scales containing most of the gravity wave drag and blocking drag. The agreement is found to be satisfactory unless the drag is weak and nonlinear. In that case, we find it necessary to remove a steady pattern from the nonlocal drag in order to uncover a correlation. We test a specific mountain drag scheme using the proposed diagnostic and describe procedures for tuning the scheme’s drag coefficients and treatment of anisotropy.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Steve Garner, steve.garner@noaa.gov
Save
  • Alexander, M. J., S. D. Eckermann, D. Broutman, and J. Ma, 2009: Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophys. Res. Lett., 36, L12816, https://doi.org/10.1029/2009GL038587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity‐wave effects in climate models and the global distribution of gravity‐wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, https://doi.org/10.1002/qj.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, https://doi.org/10.1175/JCLI-3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and M. Lazare, 1988: Some results concerning the effect of horizontal resolution and gravity-wave drag on simulated climate. J. Climate, 1, 789806, https://doi.org/10.1175/1520-0442(1988)001<0789:SRCTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and R. Sharman, 2008: The use of structure functions and spectra from numerical model output to determine effective model resolution. Mon. Wea. Rev., 136, 15371553, https://doi.org/10.1175/2007MWR2250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 1995: Permanent and transient upstream effects in nonlinear stratified flow over a ridge. J. Atmos. Sci., 52, 227246, https://doi.org/10.1175/1520-0469(1995)052<0227:PATUEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 2005: A topographic drag closure built on an analytical base flux. J. Atmos. Sci., 62, 23022315, https://doi.org/10.1175/JAS3496.1.

  • Garner, S. T., I. M. Held, T. Knutson, and J. Sirutis, 2009: The roles of wind shear and thermal stratification in past and projected changes of Atlantic tropical cyclone activity. J. Climate, 22, 47234734, https://doi.org/10.1175/2009JCLI2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and Coauthors, 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 63836405, https://doi.org/10.1175/JCLI-D-12-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S., and Coauthors, 2000: A comparison of single column model simulations of summertime midlatitude continental convection. J. Geophys. Res., 105, 20912124, https://doi.org/10.1029/1999JD900971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and I. N. James, 2014: Fluid Dynamics of the Midlatitude Atmosphere. John Wiley and Sons, 432 pp.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 18751902, https://doi.org/10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity‐wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, https://doi.org/10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinker, E., and P. D. Sardeshmukh, 1992: The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. J. Atmos. Sci., 49, 608627, https://doi.org/10.1175/1520-0469(1992)049<0608:TDOMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using a 18-km grid regional model. Bull. Amer. Meteor. Soc., 88, 15491565, https://doi.org/10.1175/BAMS-88-10-1549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34, 281287, https://doi.org/10.1175/1520-0450-34.1.281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid‐scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, C. J., and S. D. Eckermann, 1995: A three-dimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary results for the middle atmosphere. J. Atmos. Sci., 52, 19591984, https://doi.org/10.1175/1520-0469(1995)052<1959:ATDNRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and I. A. Renfrew, 2005: Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. J. Climate, 18, 37133725, https://doi.org/10.1175/JCLI3455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity-wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 10011039, https://doi.org/10.1002/qj.49711247406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and S. T. Garner, 2006: Sensitivity of radiative–convective equilibrium simulations to horizontal resolution. J. Atmos. Sci., 63, 19101923, https://doi.org/10.1175/JAS3705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 9771003, https://doi.org/10.1175/1520-0469(1985)042<0977:UEOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preusse, P., S. D. Eckermann, and M. Ern, 2008: Transparency of the atmosphere to short horizontal wavelength gravity waves. J. Geophys. Res., 113, D24104, https://doi.org/10.1029/2007JD009682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2014: Simulations of the present and late-twenty-first-century western North Pacific tropical cyclone activity using a regional model. J. Climate, 27, 34053424, https://doi.org/10.1175/JCLI-D-12-00830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zadra, A., M. Roch, S. Laroche, and M. Charron, 2003: The subgrid‐scale orographic blocking parametrization of the GEM Model. Atmos.–Ocean, 41, 155170, https://doi.org/10.3137/ao.410204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018: The GFDL global atmosphere and land model AM4. 0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. J. Adv. Model. Earth Syst., 10, 735769, https://doi.org/10.1002/2017MS001209.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 185 61 6
PDF Downloads 200 43 1