Mesoscale Horizontal Kinetic Energy Spectra of a Tropical Cyclone

Yuan Wang College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China

Search for other papers by Yuan Wang in
Current site
Google Scholar
PubMed
Close
,
Lifeng Zhang College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China

Search for other papers by Lifeng Zhang in
Current site
Google Scholar
PubMed
Close
,
Jun Peng College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China

Search for other papers by Jun Peng in
Current site
Google Scholar
PubMed
Close
, and
Saisai Liu College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, and Unit 31010, People’s Liberation Army, Beijing, China

Search for other papers by Saisai Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A high-resolution cloud-permitting simulation with the Weather Research and Forecasting (WRF) Model is performed to investigate the mesoscale horizontal kinetic energy (HKE) spectra of a tropical cyclone (TC). The spectrum displays an arc-like shape in the troposphere and a quasi-linear shape in the lower stratosphere for wavelengths below 500 km during the mature period of the TC, while they both develop a quasi −5/3 slope. The total HKE spectrum is dominated by its rotational component in the troposphere but by its divergent component in the lower stratosphere. Further spectral HKE budget diagnosis reveals a generally downscale cascade of HKE, although a local upscale cascade gradually forms in the lower stratosphere. However, the mesoscale energy spectrum is not only governed by the energy cascade, but is evidently influenced also by other physical processes, among which the buoyancy effect converts available potential energy (APE) to HKE in the mid- and upper troposphere and converts HKE to APE in the lower stratosphere, the vertically propagating inertia–gravity waves transport the HKE from the upper troposphere to lower and higher layers, and the vertical transportation of convection always transports HKE upward.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lifeng Zhang, zhanglif_qxxy@sina.cn

Abstract

A high-resolution cloud-permitting simulation with the Weather Research and Forecasting (WRF) Model is performed to investigate the mesoscale horizontal kinetic energy (HKE) spectra of a tropical cyclone (TC). The spectrum displays an arc-like shape in the troposphere and a quasi-linear shape in the lower stratosphere for wavelengths below 500 km during the mature period of the TC, while they both develop a quasi −5/3 slope. The total HKE spectrum is dominated by its rotational component in the troposphere but by its divergent component in the lower stratosphere. Further spectral HKE budget diagnosis reveals a generally downscale cascade of HKE, although a local upscale cascade gradually forms in the lower stratosphere. However, the mesoscale energy spectrum is not only governed by the energy cascade, but is evidently influenced also by other physical processes, among which the buoyancy effect converts available potential energy (APE) to HKE in the mid- and upper troposphere and converts HKE to APE in the lower stratosphere, the vertically propagating inertia–gravity waves transport the HKE from the upper troposphere to lower and higher layers, and the vertical transportation of convection always transports HKE upward.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lifeng Zhang, zhanglif_qxxy@sina.cn
Save
  • Bierdel, L., P. Friederichs, and S. Bentzien, 2012: Spatial kinetic energy spectra in the convection-permitting limited-area NWP model COSMO-DE. Meteor. Z., 21, 245258, https://doi.org/10.1127/0941-2948/2012/0319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1979: Stratospheric wave spectra resembling turbulence. Science, 204, 832835, https://doi.org/10.1126/science.204.4395.832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., and Coauthors, 2008: Prediction of Atlantic tropical cyclones with the Advanced Hurricane WRF (AHW) model. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 18A.2, https://ams.confex.com/ams/28Hurricanes/webprogram/Paper138004.html.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gage, K. S., 1979: Evidence for a k5/3 law inertial range in mesoscale two-dimensional turbulence. J. Atmos. Sci., 36, 19501954, https://doi.org/10.1175/1520-0469(1979)036<1950:EFALIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, https://doi.org/10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-Y., and H.-Y. Chun, 2010: Stratospheric gravity waves generated by Typhoon Saomai (2006): Numerical modeling in a moving frame following the typhoon. J. Atmos. Sci., 67, 36173636, https://doi.org/10.1175/2010JAS3374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, https://doi.org/10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci., 58, 329348, https://doi.org/10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuester, M. A., M. J. Alexander, and E. A. Ray, 2008: A model study of gravity waves over Hurricane Humberto (2001). J. Atmos. Sci., 65, 32313246, https://doi.org/10.1175/2008JAS2372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, https://doi.org/10.1017/S0022112005008128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., and J. Y. N. Cho, 2001: Horizontal velocity structure functions in the upper troposphere and lower stratosphere. 2. Theoretical considerations. J. Geophys. Res., 106, 10 23310 241, https://doi.org/10.1029/2000JD900815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, https://doi.org/10.1111/j.2153-3490.1969.tb00444.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1964: A dynamical model for the study of tropical cyclone development. Geofys. Int., 4, 187198.

  • Peng, J., L. Zhang, Y. Luo, and Y. Zhang, 2014: Mesoscale energy spectra of the mei-yu front system. Part I: Kinetic energy spectra. J. Atmos. Sci., 71, 3755, https://doi.org/10.1175/JAS-D-13-085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, and J. Guan, 2015a: Applications of a moist nonhydrostatic formulation of the spectral energy budget to baroclinic waves. Part I: The lower-stratospheric energy spectra. J. Atmos. Sci., 72, 20902108, https://doi.org/10.1175/JAS-D-14-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, and J. Guan, 2015b: Applications of a moist nonhydrostatic formulation of the spectral energy budget to baroclinic waves. Part II: The upper-tropospheric energy spectra. J. Atmos. Sci., 72, 39233939, https://doi.org/10.1175/JAS-D-14-0359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and S. M. deBruynKops, 2003: Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids, 15, 20472059, https://doi.org/10.1063/1.1578077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396, https://doi.org/10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, https://doi.org/10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and C. Snyder, 2008: A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci., 65, 10631076, https://doi.org/10.1175/2007JAS2449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sun, Y. Q., and F. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 14191438, https://doi.org/10.1175/JAS-D-15-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., R. Rotunno, and F. Zhang, 2017: Contributions of moist convection and internal gravity waves to building the atmospheric −5/3 kinetic energy spectra. J. Atmos. Sci., 74, 185201, https://doi.org/10.1175/JAS-D-16-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2006: A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause. Proc. Natl. Acad. Sci. USA, 103, 14 69014 694, https://doi.org/10.1073/pnas.0605494103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and W. W. Orlando, 2003: The k3 and k5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824835, https://doi.org/10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonich, P. T., and G. J. Hakim, 2018: Hurricane kinetic energy spectra from in situ aircraft observations. J. Atmos. Sci., 75, 25232532, https://doi.org/10.1175/JAS-D-17-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and P. Bartello, 2004: Stratified turbulence dominated by vortical motion. J. Fluid Mech., 517, 281308, https://doi.org/10.1017/S0022112004000977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2009: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci., 66, 883901, https://doi.org/10.1175/2008JAS2829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, https://doi.org/10.1175/JAS-D-11-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1113 591 192
PDF Downloads 556 90 7