Nonlinear Formation of the Three-Dimensional Spectrum of Mesoscale Wind Velocity and Temperature Fluctuations in a Stably Stratified Atmosphere

Igor Chunchuzov Obukhov Institute of Atmospheric Physics, Moscow, Russia

Search for other papers by Igor Chunchuzov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The theory of formation of the space–time spectrum of the mesoscale fluctuations in the horizontal wind velocity and vertical displacements (or relative temperature fluctuations) in a stably stratified atmosphere is developed. The nonlinear mechanism of the formation of the finescale layered inhomogeneities in the internal wave fields associated with the nonresonant wave–wave and wave–vortical mode interactions is described. The 3D spatial spectra of the layered inhomogeneities are obtained from the approximate solutions of Lagrangian motion equations for internal waves and subsequent transition to the Eulerian coordinate system. Because of such transition, the advection of internal waves by the wind induced by the waves and vortical modes is taken into account. The contributions from the large-scale wind disturbances and finescale layered inhomogeneities to the horizontal wavenumber spectrum of the velocity fluctuations are found. Using an analytic form obtained for the 3D spectrum, the comparison is made between the modeled one-dimensional (1D) wavenumber spectra (vertical and horizontal) of the fluctuations with the observed spectra in the upper troposphere and lower stratosphere. The observed 1D (horizontal and vertical) wavenumber spectra of the horizontal velocity fluctuations with a −3 power-law decay are explained.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Igor Chunchuzov, igor.chunchuzov@gmail.com

Abstract

The theory of formation of the space–time spectrum of the mesoscale fluctuations in the horizontal wind velocity and vertical displacements (or relative temperature fluctuations) in a stably stratified atmosphere is developed. The nonlinear mechanism of the formation of the finescale layered inhomogeneities in the internal wave fields associated with the nonresonant wave–wave and wave–vortical mode interactions is described. The 3D spatial spectra of the layered inhomogeneities are obtained from the approximate solutions of Lagrangian motion equations for internal waves and subsequent transition to the Eulerian coordinate system. Because of such transition, the advection of internal waves by the wind induced by the waves and vortical modes is taken into account. The contributions from the large-scale wind disturbances and finescale layered inhomogeneities to the horizontal wavenumber spectrum of the velocity fluctuations are found. Using an analytic form obtained for the 3D spectrum, the comparison is made between the modeled one-dimensional (1D) wavenumber spectra (vertical and horizontal) of the fluctuations with the observed spectra in the upper troposphere and lower stratosphere. The observed 1D (horizontal and vertical) wavenumber spectra of the horizontal velocity fluctuations with a −3 power-law decay are explained.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Igor Chunchuzov, igor.chunchuzov@gmail.com
Save
  • Allen, K. A., and R. I. Joseph, 1989: A canonical statistical theory of oceanic internal waves. J. Fluid Mech., 204, 185228, https://doi.org/10.1017/S0022112089001722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., S. D. Eckermann, P. A. Newman, L. Lait, K. R. Chan, M. Loewenstein, M. H. Proffitt, and B. L. Gary, 1996: Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft. J. Geophys. Res., 101, 94419470, https://doi.org/10.1029/95JD03835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, and O. Bühler, 2014: Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum. Proc. Natl. Acad. Sci. USA, 111, 17 03317 038, https://doi.org/10.1073/pnas.1410772111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chunchuzov, I. P., 1994: On a possible generation mechanism for nonstationary mountain waves in the atmosphere. J. Atmos. Sci., 51, 21962205, https://doi.org/10.1175/1520-0469(1994)051<2196:OAPGMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chunchuzov, I. P., 1996: The spectrum of high-frequency internal waves in the atmospheric waveguide. J. Atmos. Sci., 53, 17981814, https://doi.org/10.1175/1520-0469(1996)053<1798:TSOHFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chunchuzov, I. P., 2001: On the role of nonlinearity in the formation of the spectrum of atmospheric gravity waves. Izv. Atmos. Oceanic Phys., 37, 466469.

    • Search Google Scholar
    • Export Citation
  • Chunchuzov, I. P., 2002: On the high-wavenumber form of the Eulerian internal wave spectrum in the atmosphere. J. Atmos. Sci., 59, 17531774, https://doi.org/10.1175/1520-0469(2002)059<1753:OTHWFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chunchuzov, I. P., 2004: Influence of internal gravity waves on sound propagation in the lower atmosphere. J. Meteor. Atmos. Phys., 85, 6176, https://doi.org/10.1007/s00703-003-0034-y.

    • Search Google Scholar
    • Export Citation
  • Chunchuzov, I. P., 2009: On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere. Ann. Geophys., 27, 41054124, https://doi.org/10.5194/angeo-27-4105-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chunchuzov, I. P., S. N. Kulichlov, A. I. Otrezov, V. G. Perepelkin, M. A. Kallistratova, V. N. Tovchigrechko, E. N. Kadygrov, and R. D. Kouznetsov, 2005: Acoustic study of mesoscale fluctuations in the wind velocity in stable atmospheric boundary layer. Izv. Atmos. Oceanic Phys., 41, 693712.

    • Search Google Scholar
    • Export Citation
  • Chunchuzov, I. P., S. N. Kulichlov, V. Perepelkin, O. Popov, P. Firstov, J. D. Assink, and E. Marchetti, 2015: Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere. J. Geophys. Res. Atmos., 120, 88288840, https://doi.org/10.1002/2015JD023276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chunchuzov, I. P., and Coauthors, 2017: Influence of internal gravity waves on meteorological fields and gas constituents near Moscow and Beijing. Izv. Atmos. Oceanic Phys., 53, 524538, https://doi.org/10.1134/S0001433817050048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1979: Stratospheric wave spectra resembling turbulence. Science, 204, 832835, https://doi.org/10.1126/science.204.4395.832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1997: Saturated cascade similitude theory of gravity wave spectra. J. Geophys. Res., 102, 29 79929 817, https://doi.org/10.1029/97JD02151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., 1999: Isentropic advection by gravity waves: Quasi-universal M−3 vertical wavenumber spectra near the onset of instability. Geophys. Res. Lett., 26, 201204, https://doi.org/10.1029/1998GL900283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Embid, P. F., and A. J. Majda, 1998: Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers. Geophys. Astrophys. Fluid Dyn., 87, 130, https://doi.org/10.1080/03091929808208993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gossard, E. E., and W. H. Hooke, 1975: Waves in the Atmosphere. Elsevier, 456 pp.

  • Gurbatov, S. N., A. N. Malakhov, and A. I. Saichev, 1991: Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays, and Particles. Manchester University Press, 308 pp.

  • Gurvich, A. S., and I. P. Chunchuzov, 2003: Parameters of the fine density structure in the stratosphere obtained from spacecraft observations of stellar scintillations. J. Geophys. Res., 108, 4166, https://doi.org/10.1029/2002JD002281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurvich, A. S., and V. Kan, 2003: Structure of air density irregularities in the stratosphere from spacecraft observations of stellar scintillation: 1. Three-dimensional spectrum model and recovery of its parameters. Izv. Atmos. Oceanic Phys., 39, 300310.

    • Search Google Scholar
    • Export Citation
  • Gurvich, A. S., and I. P. Chunchuzov, 2008: Three-dimensional spectrum of temperature fluctuations in stably stratified atmosphere. Ann. Geophys., 26, 20372042, https://doi.org/10.5194/angeo-26-2037-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., F. Vial, C. R. Mechoso, C. Basdevant, and P. Cocquerez, 2002: Quasi-Lagrangian measurements in the lower stratosphere reveal an energy peak associated with near-inertial waves. Geophys. Res. Lett., 29, 1229, https://doi.org/10.1029/2001GL014083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1991a: The saturation of gravity waves in the middle atmosphere. Part I: Critique of linear instability theory. J. Atmos. Sci., 48, 13481359, https://doi.org/10.1175/1520-0469(1991)048<1348:TSOGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1991b: The saturation of gravity waves in the middle atmosphere. Part II: Development of Doppler-spread theory. J. Atmos. Sci., 48, 13601379, https://doi.org/10.1175/1520-0469(1991)048<1361:TSOGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 2001: Theory of the Eulerian tail in the spectra of atmospheric and oceanic internal gravity waves. J. Fluid Mech., 448, 289313, https://doi.org/10.1017/S0022112001005973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hostetler, C. A., and C. S. Gardner, 1994: Observations of horizontal and vertical wave number spectra of gravity wave motions in the stratosphere and mesosphere over the mid-Pacific. J. Geophys. Res., 99, 12831302, https://doi.org/10.1029/93JD02927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kan, V., V. F. Sofieva, and F. Dalaudier, 2014: Variable anisotropy of small-scale stratospheric irregularities retrieved from stellar scintillation measurements by GOMOS/Envisat. Atmos. Meas. Tech., 7, 18611872, https://doi.org/10.5194/amt-7-1861-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., 2009a: Testing Lagrangian theories of internal wave spectra. Part I: Varying the amplitude and wavenumbers. J. Atmos. Sci., 66, 10771100, https://doi.org/10.1175/2008JAS2666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., 2009b: Testing Lagrangian theories of internal wave spectra. Part II: Varying the number of waves. J. Atmos. Sci., 66, 11011166, https://doi.org/10.1175/2008JAS2667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaassen, G. P., and L. J. Sonmor, 2006: Does kinematic advection by superimposed waves provide an explanation for quasi-universal gravity-wave spectra? Geophys. Res. Lett., 33, L23802, https://doi.org/10.1029/2006GL027388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, H., 1932: Hydrodynamics. 6th ed. Cambridge University Press, 738 pp.

  • Lelong, M. P., and J. J. Riley, 1991: Internal wave–vortical mode interactions in strongly stratified flows. J. Fluid Mech., 232, 119, https://doi.org/10.1017/S0022112091003609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 504 pp.

  • Lilly, D. K., and P. F. Lester, 1974: Waves and turbulence in the stratosphere. J. Atmos. Sci., 31, 800812, https://doi.org/10.1175/1520-0469(1974)031<0800:WATITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, https://doi.org/10.1017/S0022112005008128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2007: Horizontal wavenumber spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere. J. Atmos. Sci., 64, 10171025, https://doi.org/10.1175/JAS3864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2015: A Helmholtz decomposition of structure functions and spectra calculated from aircraft data. J. Fluid Mech., 762, R4, https://doi.org/10.1017/jfm.2014.685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., 1964: The spectrum of nearly inertial turbulence in a stably stratified fluid. J. Atmos. Sci., 21, 99102, https://doi.org/10.1175/1520-0469(1964)021<0099:TSONIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., and E. G. Tabak, 2001: Hamiltonian formalism and the Garrett–Munk spectrum of internal waves in the ocean. Phys. Rev. Lett., 87, 168501, https://doi.org/10.1103/PhysRevLett.87.168501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., K. Polzin, E. G. Tabak, and N. Yokoyama, 2010: Oceanic internal-wave field: Theory of scale-invariant spectra. J. Phys. Oceanogr., 40, 26052623, https://doi.org/10.1175/2010JPO4132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., D. C. Fritts, and K. S. Gage, 1987: An investigation of terrain effects on the mesoscale spectrum of atmospheric motions. J. Atmos. Sci., 44, 30873096, https://doi.org/10.1175/1520-0469(1987)044<3087:AIOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1988: Turbulentnost’ i Dynamica Atmsophery (in Russian). Hydrometeoizdat, 414 pp.

  • Ostashev, V. E., I. P. Chunchuzov, and D. K. Wilson, 2005: Sound propagation through and scattering by internal gravity waves in a stably stratified atmosphere. J. Acoust. Soc. Amer., 118, 34203429, https://doi.org/10.1121/1.2126938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozmidov, R. V., 1965: On the turbulent exchange in a stably stratified ocean. Izv. Atmos. Oceanic Phys., 1, 833865.

  • Phillips, O. M., 1967: Theoretical and experimental study of gravity wave interactions. Proc. Roy. Soc. London, 299A, 141160, https://doi.org/10.1098/rspa.1967.0125.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2008: Advection, phase distortion, and the frequency spectrum of finescale fields in the sea. J. Phys. Oceanogr., 38, 291313, https://doi.org/10.1175/2007JPO3559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudenko, O. V., and S. I. Soluyan, 1977: Theoretical Foundations of Nonlinear Acoustics. Consultants Bureau, 274 pp.

    • Crossref
    • Export Citation
  • Shur, G. N., 1962: Experimental investigations of the energy spectrum of atmospheric turbulence. Tr. Tsentr. Aerol. Obs., 43, 7990.

  • Skamarock, W. C., S. H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, https://doi.org/10.1175/JAS-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., and B. Galperin, 2013: An analytical theory of the buoyancy–Kolmogorov subrange transition in turbulent flows with stable stratification. Philos. Trans. Roy. Soc., 371A, 20120212, https://doi.org/10.1098/rsta.2012.0212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and I. Staroselsky, 2005: A quasinormal scale elimination model of turbulent flows with stable stratification. Phys. Fluids, 17, 085107, https://doi.org/10.1063/1.2009010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2015: Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev. Geophys., 53, 956993, https://doi.org/10.1002/2015RG000487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., R. Rotunno, and F. Zhang, 2016: Contributions of moist convection and internal gravity waves to building the atmospheric −5/3 kinetic energy spectra. J. Atmos. Sci., 74, 185201, https://doi.org/10.1175/JAS-D-16-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuda, T., 2014: Characteristics of atmospheric gravity waves observed using the MU (middle and upper atmosphere) radar and GPS (global positioning system) radio occultation. Proc. Japan Acad., 90B, 1227, https://doi.org/10.2183/pjab.90.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., S. J. Allen, and S. D. Eckermann, 1997: Gravity-wave parameters in the lower stratosphere. Gravity Wave Processes: Their Parameterization in Global Climate Models, K. Hamilton, Ed., NATO ASI Series, Springer-Verlag, 7–25.

    • Crossref
    • Export Citation
  • Vinnichenko, N. K., N. Z. Pinus, S. M. Shmeter, and G. N. Shur, 1980: Turbulence in the Free Atmosphere. 2nd ed. Plenum, 310 pp.

    • Crossref
    • Export Citation
  • Voronovich, A. G., 1979: Hamiltonian formalism for internal waves in the ocean. Izv. Atmos. Oceanic Phys., 15, 5257.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1071 795 261
PDF Downloads 235 38 6