The Vertical Structure of Annular Modes

Aditi Sheshadri Department of Earth System Science, Stanford University, Stanford, California

Search for other papers by Aditi Sheshadri in
Current site
Google Scholar
PubMed
Close
,
R. Alan Plumb Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by R. Alan Plumb in
Current site
Google Scholar
PubMed
Close
,
Erik A. Lindgren Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Erik A. Lindgren in
Current site
Google Scholar
PubMed
Close
, and
Daniela I. V. Domeisen Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Daniela I. V. Domeisen in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Stratosphere–troposphere interactions are conventionally characterized using the first empirical orthogonal function (EOF) of fields such as zonal-mean zonal wind. Perpetual-winter integrations of an idealized model are used to contrast the vertical structures of EOFs with those of principal oscillation patterns (POPs; the modes of a linearized system governing the evolution of zonal flow anomalies). POP structures are shown to be insensitive to pressure weighting of the time series of interest, a factor that is particularly important for a deep system such as the stratosphere and troposphere. In contrast, EOFs change from being dominated by tropospheric variability with pressure weighting to being dominated by stratospheric variability without it. The analysis reveals separate tropospheric and stratospheric modes in model integrations that are set up to resemble midwinter variability of the troposphere and stratosphere in both hemispheres. Movies illustrating the time evolution of POP structures show the existence of a fast, propagating tropospheric mode in both integrations, and a pulsing stratospheric mode with a tropospheric extension in the Northern Hemisphere–like integration.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0399.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aditi Sheshadri, aditi_sheshadri@stanford.edu

Abstract

Stratosphere–troposphere interactions are conventionally characterized using the first empirical orthogonal function (EOF) of fields such as zonal-mean zonal wind. Perpetual-winter integrations of an idealized model are used to contrast the vertical structures of EOFs with those of principal oscillation patterns (POPs; the modes of a linearized system governing the evolution of zonal flow anomalies). POP structures are shown to be insensitive to pressure weighting of the time series of interest, a factor that is particularly important for a deep system such as the stratosphere and troposphere. In contrast, EOFs change from being dominated by tropospheric variability with pressure weighting to being dominated by stratospheric variability without it. The analysis reveals separate tropospheric and stratospheric modes in model integrations that are set up to resemble midwinter variability of the troposphere and stratosphere in both hemispheres. Movies illustrating the time evolution of POP structures show the existence of a fast, propagating tropospheric mode in both integrations, and a pulsing stratospheric mode with a tropospheric extension in the Northern Hemisphere–like integration.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-17-0399.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aditi Sheshadri, aditi_sheshadri@stanford.edu

Supplementary Materials

    • Supplemental Materials (ZIP 12.46 MB)
Save
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, https://doi.org/10.1029/1999JD900445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640, https://doi.org/10.1126/science.1087143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boljka, L., T. G. Shepherd, and M. Blackburn, 2018: On the coupling between barotropic and baroclinic modes of extratropical atmospheric variability. J. Atmos. Sci., 75, 18531871, https://doi.org/10.1175/JAS-D-17-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, N. J., T. G. Shepherd, T. Woolings, and R. A. Plumb, 2016: Annular modes and apparent eddy feedbacks in the Southern Hemisphere. Geophys. Res. Lett., 43, 38973902, https://doi.org/10.1002/2016GL068851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, N. J., T. G. Shepherd, T. Woollings, and R. A. Plumb, 2017: Nonstationarity in Southern Hemisphere climate variability associated with the seasonal breakdown of the stratospheric polar vortex. J. Climate, 30, 71257139, https://doi.org/10.1175/JCLI-D-17-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. A. Plumb, 2009: Quantifying the eddy feedback and the persistence of the zonal index in an idealized atmospheric model. J. Atmos. Sci., 66, 37073720, https://doi.org/10.1175/2009JAS3165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and Coauthors, 2010: Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models. J. Geophys. Res., 115, D00M06, https://doi.org/10.1029/2009JD013770.

    • Search Google Scholar
    • Export Citation
  • Gritsun, A., and G. Branstator, 2007: Climate response using a three-dimensional operator based on the fluctuation–dissipation theorem. J. Atmos. Sci., 64, 25582575, https://doi.org/10.1175/JAS3943.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., and Z. Kuang, 2016: The linear response function of an idealized atmosphere. Part II: Implications for the practical use of the fluctuation–dissipation theorem and the role of operator’s nonnormality. J. Atmos. Sci., 73, 34413452, https://doi.org/10.1175/JAS-D-16-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., and Y. Kuroda, 2000: A mechanistic model study of slowly propagating coupled stratosphere-troposphere variability. J. Geophys. Res., 105, 12 36112 370, https://doi.org/10.1029/2000JD900094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., Y. Kuroda, and S. Pawson, 2000: Stratospheric sudden warmings and slowly propagating zonal-mean zonal wind anomalies. J. Geophys. Res., 105, 12 35112 359, https://doi.org/10.1029/2000JD900095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuroda, K., 2002: Relationship between the polar-night oscillation and the annular mode. Geophys. Res. Lett., 29, 1240, https://doi.org/10.1029/2001GL013933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., S. W. Son, K. Grise, and S. B. Feldstein, 2007: A mechanism for the poleward propagation of zonal mean flow anomalies. J. Atmos. Sci., 64, 849868, https://doi.org/10.1175/JAS3861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. J. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, https://doi.org/10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 12121227, https://doi.org/10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutsko, N. J., I. M. Held, and P. Zurita-Gotor, 2015: Applying the fluctuation–dissipation theorem to a two-layer model of quasigeostrophic turbulence. J. Atmos. Sci., 72, 31613177, https://doi.org/10.1175/JAS-D-14-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martynov, R. S., and Y. M. Nechepurenko, 2004: Finding the response matrix for a discrete linear stochastic dynamical system. J. Comput. Math. Phys., 44, 771781.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 2008: Tropical and stratospheric influences on extratropical short-term climate variability. J. Climate, 21, 43264347, https://doi.org/10.1175/2008JCLI2118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., 1989: Random forcing and forecasting using principal oscillation pattern analysis. Mon. Wea. Rev., 117, 21652185, https://doi.org/10.1175/1520-0493(1989)117<2165:RFAFUP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, 1114, https://doi.org/10.1029/2001GL014284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ring, M. J., and R. A. Plumb, 2007: Forced annular mode patterns in a simple atmospheric general circulation model. J. Atmos. Sci., 64, 36113626, https://doi.org/10.1175/JAS4031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ring, M. J., and R. A. Plumb, 2008: The response of a simplified GCM to axisymmetric forcings: Applicability of the fluctuation–dissipation theorem. J. Atmos. Sci., 65, 38803898, https://doi.org/10.1175/2008JAS2773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and I. N. James, 2000: Response of the stratosphere to interannual variability of tropospheric planetary waves. Quart. J. Roy. Meteor. Soc., 126, 275297, https://doi.org/10.1002/qj.49712656214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2016: Seasonal winter forecasts and the stratosphere. Atmos. Sci. Lett., 17, 5156, https://doi.org/10.1002/asl.598.

  • Scott, R. K., and L. M. Polvani, 2006: Internal variability of the winter stratosphere. Part I: Time-independent forcing. J. Atmos. Sci., 63, 27582776, https://doi.org/10.1175/JAS3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheshadri, A., and R. A. Plumb, 2016: Sensitivity of the surface responses of an idealized AGCM to the timing of imposed ozone depletion-like polar stratospheric cooling. Geophys. Res. Lett., 43, 23302336, https://doi.org/10.1002/2016GL067964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheshadri, A., and R. A. Plumb, 2017: Propagating annular modes: Empirical orthogonal functions, principal oscillation patterns, and time scales. J. Atmos. Sci., 74, 13451361, https://doi.org/10.1175/JAS-D-16-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheshadri, A., R. A. Plumb, and E. P. Gerber, 2015: Seasonal variability of the polar stratospheric vortex in an idealized AGCM. J. Atmos. Sci., 72, 22482266, https://doi.org/10.1175/JAS-D-14-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sparrow, S., M. Blackburn, and J. D. Haigh, 2009: Modes of variability in the atmosphere and eddy–zonal flow interactions. Part I: High- and low-frequency behavior. J. Atmos. Sci., 66, 30753094, https://doi.org/10.1175/2009JAS2953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and Coauthors, 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 9871003, https://doi.org/10.1002/qj.2432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and J. Xu, 1990: Principal oscillation pattern analysis of the tropical 30 to 60 day oscillation in the tropical troposphere. Part I: Definition of an index and its prediction. Climate Dyn., 4, 175190, https://doi.org/10.1007/BF00209520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., T. Bruns, I. Fischer-Burns, and K. Hasselmann, 1988: Principal oscillation pattern analysis of the 30- to 60-day oscillation in a GCM equatorial troposphere. J. Geophys. Res., 93, 11 02011 036, https://doi.org/10.1029/JD093iD09p11022.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and H. von Storch, 1990: Predicting the state of the Southern Oscillation using principal oscillation pattern analysis. J. Climate, 3, 13151329, https://doi.org/10.1175/1520-0442(1990)003<1316:PTSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1610 673 142
PDF Downloads 534 76 7