Determination of Best Tropopause Definition for Convective Transport Studies

Emily M. Maddox Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Emily M. Maddox in
Current site
Google Scholar
PubMed
Close
and
Gretchen L. Mullendore Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Gretchen L. Mullendore in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An idealized three-dimensional cloud-resolving model is used to investigate the sensitivity of cross-tropopause convective mass transport to tropopause definition. A simulation is conducted to encompass the growth and decay cycle of a supercell thunderstorm, with a focus on irreversible transport above the tropopause. Five previously published tropopause definitions are evaluated: World Meteorological Organization (WMO) temperature lapse rate, potential vorticity, static stability, vertical curvature of the Brunt–Väisälä frequency, and stratospheric tracer concentration. By analyzing the behavior of different definitions both during and after active convection, we are able to define “best” choices for tropopause definitions as those that return to states most closely matching the preconvective environment. Potential vorticity and stratospheric tracer concentration are shown to perform poorly when analyzing deep convection. The WMO thermal tropopause and static stability definitions are found to perform the best, providing similar tropopause placement and quantities of irreversible mass transport. This investigation highlights the challenges of defining a tropopause in the vicinity of deep convection and demonstrates the need to clearly communicate calculation methods and threshold choices in the literature.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gretchen L. Mullendore, gretchen@atmos.und.edu

Abstract

An idealized three-dimensional cloud-resolving model is used to investigate the sensitivity of cross-tropopause convective mass transport to tropopause definition. A simulation is conducted to encompass the growth and decay cycle of a supercell thunderstorm, with a focus on irreversible transport above the tropopause. Five previously published tropopause definitions are evaluated: World Meteorological Organization (WMO) temperature lapse rate, potential vorticity, static stability, vertical curvature of the Brunt–Väisälä frequency, and stratospheric tracer concentration. By analyzing the behavior of different definitions both during and after active convection, we are able to define “best” choices for tropopause definitions as those that return to states most closely matching the preconvective environment. Potential vorticity and stratospheric tracer concentration are shown to perform poorly when analyzing deep convection. The WMO thermal tropopause and static stability definitions are found to perform the best, providing similar tropopause placement and quantities of irreversible mass transport. This investigation highlights the challenges of defining a tropopause in the vicinity of deep convection and demonstrates the need to clearly communicate calculation methods and threshold choices in the literature.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gretchen L. Mullendore, gretchen@atmos.und.edu
Save
  • Barber, K., 2015: Simulations of convectively-induced turbulence based on radar-based climatology of tropical storm types. M.S. thesis, Dept. of Atmospheric Sciences, University of North Dakota, 151 pp.

  • Bethan, S., G. Vaughan, and S. J. Reid, 1996: A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere. Quart. J. Roy. Meteor. Soc., 122, 929944, https://doi.org/10.1002/qj.49712253207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigelbach, B. C., G. L. Mullendore, and M. Starzec, 2014: Differences in deep convective transport characteristics between quasi-isolated strong convection and mesoscale convective systems using seasonal WRF simulations. J. Geophys. Res. Atmos., 119, 11 44511 455, https://doi.org/10.1002/2014JD021875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., 67, 25822600, https://doi.org/10.1175/2010JAS3287.1.

  • Cooney, J. W., K. P. Bowman, C. R. Homeyer, and T. M. Fenske, 2018: Ten year analysis of tropopause-overshooting convection using GridRad data. J. Geophys. Res. Atmos., 123, 329343, https://doi.org/10.1002/2017JD027718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickerson, R. R., and Coauthors, 1987: Thunderstorms: An important mechanism in the transport of air pollutants. Science, 235, 460465, https://doi.org/10.1126/science.235.4787.460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feichter, J., and P. J. Crutzen, 1990: Parameterization of vertical tracer transport due to deep cumulus convection in a global transport model and its evaluation with 222radon measurements. Tellus, 42B, 100117, https://doi.org/10.1034/j.1600-0889.1990.00011.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, H., and Coauthors, 2003: Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. Atmos. Chem. Phys., 3, 739745, https://doi.org/10.5194/acp-3-739-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, 2011: The extratropical upper troposphere and lower stratosphere. Rev. Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauf, T., P. Schulte, R. Alheit, and H. Schlager, 1995: Rapid vertical trace gas transport by an isolated midlatitude thunderstorm. J. Geophys. Res., 100, 22 95722 970, https://doi.org/10.1029/95JD02324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., T. D. Schaack, and A. J. Lenzen, 1991: Global objective tropopause analysis. Mon. Wea. Rev., 119, 18161831, https://doi.org/10.1175/1520-0493(1991)119<1816:GOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 532 pp.

    • Crossref
    • Export Citation
  • Homeyer, C. R., and Coauthors, 2014: Convective transport of water vapor into the lower stratosphere observed during double-tropopause events. J. Geophys. Res. Atmos., 119, 10 94110 958, https://doi.org/10.1002/2014JD021485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, A., P. Konopka, R. Müller, and L. L. Pan, 2011: Dynamic tropopause based on isentropic potential vorticity gradients. J. Geophys. Res., 116, D01110, https://doi.org/10.1029/2010JD014343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullendore, G. L., D. R. Durran, and J. R. Holton, 2005: Cross-tropopause tracer transport in midlatitude convection. J. Geophys. Res., 110, D06113, https://doi.org/10.1029/2004JD005059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L. L., W. J. Randel, B. L. Gary, M. J. Mahoney, and E. J. Hintsa, 2004: Definitions and sharpness of the extratropical tropopause: A trace gas perspective. J. Geophys. Res., 109, D23103, https://doi.org/10.1029/2004JD004982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulida, O., R. R. Dickerson, and A. Heymsfield, 1996: Stratosphere-troposphere exchange in a midlatitude mesoscale convective complex: 1. Observations. J. Geophys. Res., 101, 68236836, https://doi.org/10.1029/95JD03523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., D. J. Seidel, and L. L. Pan, 2007: Observational characteristics of double tropopauses. J. Geophys. Res., 112, D07309, https://doi.org/10.1029/2006JD007904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479483, https://doi.org/10.1126/science.1084123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., and J. M. Pearson, 2017: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 317337, https://doi.org/10.1175/JAMC-D-16-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2006: Positive-definite and monotonic limiters for unrestricted-time-step transport schemes. Mon. Wea. Rev., 134, 22412250, https://doi.org/10.1175/MWR3170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2000: Numerical simulations of the July 10 stratospheric-tropospheric experiment: Radiation, aerosols, and ozone/deep convection experiment convective system: Kinematics and transport. J. Geophys. Res., 105, 19 97319 990, https://doi.org/10.1029/2000JD900179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Towns, J., and Coauthors, 2014: XSEDE: Accelerating scientific discovery. Comput. Sci. Eng., 16, 6274, https://doi.org/10.1109/MCSE.2014.80.

  • Twohy, C. H., and Coauthors, 2002: Deep convection as a source of new particles in the midlatitude upper troposphere. J. Geophys. Res., 107, 4560, https://doi.org/10.1029/2001JD000323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wales, P. A., and Coauthors, 2018: Stratospheric injection of brominated very short-lived substances: Aircraft observations in the western Pacific and representation in global models. J. Geophys. Res. Atmos., 123, 56905719, https://doi.org/10.1029/2017JD027978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Definition of the tropopause. WMO Bull., 6, 136.

  • Zahn, A., and C. A. M. Brenninkmeijer, 2003: New directions: A chemical tropopause defined. Atmos. Environ., 37, 439440, https://doi.org/10.1016/S1352-2310(02)00901-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahn, A., C. A. M. Brenninkmeijer, and P. F. J. van Velthoven, 2004: Passenger aircraft project CARIBIC 1997–2002, part I: The extratropical chemical tropopause. Atmos. Chem. Phys. Discuss., 4, 10911117, https://doi.org/10.5194/acpd-4-1091-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1490 252 29
PDF Downloads 1367 276 29