Concentric Eyewall Formation in Typhoon Sinlaku (2008). Part III: Horizontal Momentum Budget Analyses

Yi-Hsuan Huang Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Yi-Hsuan Huang in
Current site
Google Scholar
PubMed
Close
,
Chun-Chieh Wu Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Chun-Chieh Wu in
Current site
Google Scholar
PubMed
Close
, and
Michael T. Montgomery Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Michael T. Montgomery in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This is a follow-up work to two prior studies examining secondary eyewall formation (SEF) in Typhoon Sinlaku (2008). This study shows that, in the SEF region, the majority of the elevated winds are supergradient. About two-thirds of the rapid increase in tangential wind tendencies immediately prior to SEF are attributed to agradient wind tendencies. This suggests the importance of nonlinear, unbalanced dynamical processes in SEF in addition to the classical axisymmetric balanced response to forcings of heating and momentum. In the SEF region, analyses show two distinct responsible processes for the increasing azimuthal tangential wind in two vertical intervals. Within the boundary inflow layer, the competing effect between the mean radial influx of absolute vorticity and deceleration caused by surface friction and subgrid diffusion yields a secondary maximum of positive tendency. Analyses further demonstrate the major impact of the mean radial influx of absolute vorticity on SEF. Above the boundary inflow layer, the vertical advection acts to vertically extend the tangential wind jet via the lofting of the enhanced tangential momentum farther upward. The roles of the nonlinear unbalanced dynamics in these two processes are discussed in this paper. From a Lagrangian perspective, the persistently increasing agradient force outweighs the frictional loss, effectively decelerating boundary layer inflowing air across the SEF region. This explains the sharpening of the radial gradient of boundary layer inflow, which is shown to be responsible for the buildup of a zone with concentrated boundary layer convergence. The previously proposed unbalanced dynamical pathway to SEF is elaborated upon and supported by the current results and discussion.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chun-Chieh Wu, cwu@typhoon.as.ntu.edu.tw

Abstract

This is a follow-up work to two prior studies examining secondary eyewall formation (SEF) in Typhoon Sinlaku (2008). This study shows that, in the SEF region, the majority of the elevated winds are supergradient. About two-thirds of the rapid increase in tangential wind tendencies immediately prior to SEF are attributed to agradient wind tendencies. This suggests the importance of nonlinear, unbalanced dynamical processes in SEF in addition to the classical axisymmetric balanced response to forcings of heating and momentum. In the SEF region, analyses show two distinct responsible processes for the increasing azimuthal tangential wind in two vertical intervals. Within the boundary inflow layer, the competing effect between the mean radial influx of absolute vorticity and deceleration caused by surface friction and subgrid diffusion yields a secondary maximum of positive tendency. Analyses further demonstrate the major impact of the mean radial influx of absolute vorticity on SEF. Above the boundary inflow layer, the vertical advection acts to vertically extend the tangential wind jet via the lofting of the enhanced tangential momentum farther upward. The roles of the nonlinear unbalanced dynamics in these two processes are discussed in this paper. From a Lagrangian perspective, the persistently increasing agradient force outweighs the frictional loss, effectively decelerating boundary layer inflowing air across the SEF region. This explains the sharpening of the radial gradient of boundary layer inflow, which is shown to be responsible for the buildup of a zone with concentrated boundary layer convergence. The previously proposed unbalanced dynamical pathway to SEF is elaborated upon and supported by the current results and discussion.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chun-Chieh Wu, cwu@typhoon.as.ntu.edu.tw
Save
  • Abarca, S. F., and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802, https://doi.org/10.1029/2011GL047015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., and M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 32163230, https://doi.org/10.1175/JAS-D-12-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., and M. T. Montgomery, 2014: Departures from the axisymmetric balance dynamics during secondary eyewall formation. J. Atmos. Sci., 71, 37233738, https://doi.org/10.1175/JAS-D-14-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., and M. T. Montgomery, 2015: Are eyewall replacement cycles governed largely by axisymmetric balance dynamics? J. Atmos. Sci., 72, 8287, https://doi.org/10.1175/JAS-D-14-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., M. T. Montgomery, and J. C. McWilliams, 2015: The azimuthally averaged boundary layer structure of a numerically simulated major hurricane. J. Adv. Model. Earth Syst., 7, 12071219, https://doi.org/10.1002/2015MS000457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., M. T. Montgomery, S. A. Braun, and J. Dunion, 2016: On the secondary eyewall formation of Hurricane Edouard (2014). Mon. Wea. Rev., 144, 33213331, https://doi.org/10.1175/MWR-D-15-0421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and W.-C. Lee, 2012: An axisymmetric view of eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 24142432, https://doi.org/10.1175/JAS-D-11-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947957, https://doi.org/10.1175/1520-0493(1992)120<0947:TCECOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, https://doi.org/10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. H., R. K. Smith, and M. T. Montgomery, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, https://doi.org/10.1002/qj.502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., S. J. Majumdar, and D. S. Nolan, 2017: Secondary eyewall formation in tropical cyclones by outflow–jet interaction. J. Atmos. Sci., 74, 19411958, https://doi.org/10.1175/JAS-D-16-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., and R. A. Houze Jr., 2011: Kinematics of the secondary eyewall observed in Hurricane Rita (2005). J. Atmos. Sci., 68, 16201636, https://doi.org/10.1175/2011JAS3715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., G. H. Heymsfield, P. D. Reasor, and S. R. Guimond, 2017: Concentric eyewall asymmetries in Gonzalo (2014) observed by airborne radar. Mon. Wea. Rev., 145, 729749, https://doi.org/10.1175/MWR-D-16-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and P. A. Harr, 2008: Tropical Cyclone Structure (TCS08) field experiment: Science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209231.

    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Zhang, 2012: Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 33273346, https://doi.org/10.1175/MWR-D-10-05021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., and M. Helveston, 2008: Tropical cyclone multiple eyewall characteristics. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., P1.7, https://ams.confex.com/ams/26HURR/techprogram/paper_76084.htm.

  • Hence, D. A., and R. A. Houze Jr., 2012: Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 69, 10211036, https://doi.org/10.1175/JAS-D-11-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., and D. S. Nolan, 2007: Linear anelastic equations for atmospheric vortices. J. Atmos. Sci., 64, 29472959, https://doi.org/10.1175/JAS3991.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, https://doi.org/10.1175/2009MWR2989.1.

  • Houze, R. A., Jr., and Coauthors, 2006: The Hurricane Rainband and Intensity Change Experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87, 15031522, https://doi.org/10.1175/BAMS-87-11-1503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239, https://doi.org/10.1126/science.1135650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674, https://doi.org/10.1175/JAS-D-11-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., and S. S. Chen, 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005. J. Atmos. Sci., 67, 35813599, https://doi.org/10.1175/2010JAS3471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 14271445, https://doi.org/10.1175/MWR-D-11-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 28082830, https://doi.org/10.1175/JAS-D-13-046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2017: Time and space scales in the tropical cyclone boundary layer, and the location of the eyewall updraft. J. Atmos. Sci., 74, 33053323, https://doi.org/10.1175/JAS-D-17-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and D. S. Nolan, 2014: Reply to “Comments on ‘How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?’” J. Atmos. Sci., 71, 46924704, https://doi.org/10.1175/JAS-D-14-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892, https://doi.org/10.1175/2008MWR2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. Sitkowski, 2012: Predicting hurricane intensity and structure changes associated with eyewall replacement cycles. Wea. Forecasting, 27, 484488, https://doi.org/10.1175/WAF-D-11-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 51835198, https://doi.org/10.1175/2008MWR2378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., C.-P. Chang, Y.-T. Yang, and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 37583770, https://doi.org/10.1175/2009MWR2850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, M.-D., M. Plu, D. Barbary, F. Roux, and P. Arbogast, 2013: Dynamical and physical processes leading to tropical cyclone intensification under upper-level trough forcing. J. Atmos. Sci., 70, 25472565, https://doi.org/10.1175/JAS-D-12-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menelaou, K., M. K. Yau, and Y. Martinez, 2014: Some aspects of the problem of secondary eyewall formation in idealized three-dimensional nonlinear simulations. J. Adv. Model. Earth Syst., 6, 491512, https://doi.org/10.1002/2014MS000316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2007: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 14031423, https://doi.org/10.1175/MWR3352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008a: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVar in a real-data case study. Mon. Wea. Rev., 136, 522540, https://doi.org/10.1175/2007MWR2106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008b: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVar in a month-long experiment. Mon. Wea. Rev., 136, 36713682, https://doi.org/10.1175/2008MWR2270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, https://doi.org/10.1002/qj.49712353810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2017: On the applicability of linear axisymmetric dynamics in intensifying and mature tropical cyclones. Fluids, 2, 69, https://doi.org/10.3390/fluids2040069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., S. F. Abarca, R. K. Smith, C.-C. Wu, and Y.-H. Huang, 2014: Comments on “How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?” J. Atmos. Sci., 71, 46824691, https://doi.org/10.1175/JAS-D-13-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 1–36.

  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, https://doi.org/10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nong, S., and K. Emanuel, 2003: Concentric eyewalls in hurricanes. Quart. J. Roy. Meteor. Soc., 129, 33233338, https://doi.org/10.1256/qj.01.132.

  • Persing, J., M. T. Montgomery, J. McWilliams, and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 29912 341, https://doi.org/10.5194/acp-13-12299-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, X., and Z.-M. Tan, 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953974, https://doi.org/10.1175/JAS-D-12-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, X., Z.-M. Tan, and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922109, https://doi.org/10.1175/2010MWR3161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 93959414, https://doi.org/10.5194/acp-11-9395-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. A. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 26212643, https://doi.org/10.1175/JAS-D-11-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, https://doi.org/10.1175/MWR-D-11-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, C. M. Rozoff, and J. A. Knaff, 2012: Hurricane eyewall replacement cycle thermodynamics and the relict inner eyewall circulation. Mon. Wea. Rev., 140, 40354045, https://doi.org/10.1175/MWR-D-11-00349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-4681ST, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Slocum, C. J., G. J. Williams, R. K. Taft, and W. H. Schubert, 2014: Tropical cyclone boundary layer shocks. arXiv, http://arxiv.org/abs/1405.7939.

  • Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on tropical cyclone intensification. J. Atmos. Sci., 72, 30203031, https://doi.org/10.1175/JAS-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 20812086, https://doi.org/10.1002/qj.2804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and S. V. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, https://doi.org/10.1002/qj.428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in a Hurricane Weather Research and Forecasting simulation of Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 143, 293308, https://doi.org/10.1002/qj.2922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., Y. Jiang, B. Tan, and F. Zhang, 2013: The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008). J. Atmos. Sci., 70, 38183837, https://doi.org/10.1175/JAS-D-13-044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, https://doi.org/10.1029/2007JD008897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., C.-C. Wu, and Y. Wang, 2016: Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. J. Atmos. Sci., 73, 39113930, https://doi.org/10.1175/JAS-D-15-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Y. Ma, and N. E. Davidson, 2013: Secondary eyewall formation and eyewall replacement cycles in a simulated hurricane: Effect of the net radial force in the hurricane boundary layer. J. Atmos. Sci., 70, 13171341, https://doi.org/10.1175/JAS-D-12-017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77, 543549, https://doi.org/10.1175/1520-0477(1996)077<0543:HAIFDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and propagating convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, https://doi.org/10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of tropical cyclone track and structure based on the ensemble Kalman filter (EnKF). J. Atmos. Sci., 67, 38063822, https://doi.org/10.1175/2010JAS3444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., Y.-H. Huang, and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506527, https://doi.org/10.1175/MWR-D-11-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., Y.-H. Huang, and Z. Tan, 2015: Secondary eyewall formation in tropical cyclones. Dynamics and Predictability of Large-Scale High-Impact Weather and Climate Events, J. Li et al., Eds., Cambridge University Press, 168–175.

    • Crossref
    • Export Citation
  • Yang, Y.-T., H.-C. Kuo, E. A. Hendricks, and M. S. Peng, 2013: Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Mon. Wea. Rev., 141, 26322648, https://doi.org/10.1175/MWR-D-12-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., and B. Wang, 2013: Large-scale influences on secondary eyewall size. J. Geophys. Res. Atmos., 118, 11 08811 097, https://doi.org/10.1002/jgrd.50605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J. Geophys. Res. Atmos., 119, 80498072, https://doi.org/10.1002/2014JD021899.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1426 789 198
PDF Downloads 560 110 15